Suppr超能文献

利用多组学数据和文本挖掘将代谢基因作为雌激素受体阴性乳腺肿瘤新治疗靶点的优先级确定

Prioritization of metabolic genes as novel therapeutic targets in estrogen-receptor negative breast tumors using multi-omics data and text mining.

作者信息

Barupal Dinesh Kumar, Gao Bei, Budczies Jan, Phinney Brett S, Perroud Bertrand, Denkert Carsten, Fiehn Oliver

机构信息

West Coast Metabolomics Center, University of California, Davis, CA, USA.

Co-first authors and contributed equally to this work.

出版信息

Oncotarget. 2019 Jun 11;10(39):3894-3909. doi: 10.18632/oncotarget.26995.

Abstract

Estrogen-receptor negative (ERneg) breast cancer is an aggressive breast cancer subtype in the need for new therapeutic options. We have analyzed metabolomics, proteomics and transcriptomics data for a cohort of 276 breast tumors (MetaCancer study) and nine public transcriptomics datasets using univariate statistics, meta-analysis, Reactome pathway analysis, biochemical network mapping and text mining of metabolic genes. In the MetaCancer cohort, a total of 29% metabolites, 21% proteins and 33% transcripts were significantly different (raw <0.05) between ERneg and ERpos breast tumors. In the nine public transcriptomics datasets, on average 23% of all genes were significantly different (raw <0.05). Specifically, up to 60% of the metabolic genes were significantly different (meta-analysis raw <0.05) across the transcriptomics datasets. Reactome pathway analysis of all omics showed that energy metabolism, and biosynthesis of nucleotides, amino acids, and lipids were associated with ERneg status. Text mining revealed that several significant metabolic genes and enzymes have been rarely reported to date, including PFKP, GART, PLOD1, ASS1, NUDT12, FAR1, PDE7A, FAHD1, ITPK1, SORD, HACD3, CDS2 and PDSS1. Metabolic processes associated with ERneg tumors were identified by multi-omics integration analysis of metabolomics, proteomics and transcriptomics data. Overall results suggested that TCA anaplerosis, proline biosynthesis, synthesis of complex lipids and mechanisms for recycling substrates were activated in ERneg tumors. Under-reported genes were revealed by text mining which may serve as novel candidates for drug targets in cancer therapies. The workflow presented here can also be used for other tumor types.

摘要

雌激素受体阴性(ERneg)乳腺癌是一种侵袭性乳腺癌亚型,需要新的治疗方案。我们使用单变量统计、荟萃分析、Reactome通路分析、生化网络映射和代谢基因文本挖掘,分析了276例乳腺肿瘤队列(MetaCancer研究)的代谢组学、蛋白质组学和转录组学数据,以及9个公共转录组学数据集。在MetaCancer队列中,ERneg和ERpos乳腺肿瘤之间共有29%的代谢物、21%的蛋白质和33%的转录本存在显著差异(原始P<0.05)。在9个公共转录组学数据集中,平均23%的所有基因存在显著差异(原始P<0.05)。具体而言,在所有转录组学数据集中,高达60%的代谢基因存在显著差异(荟萃分析原始P<0.05)。对所有组学进行Reactome通路分析表明,能量代谢以及核苷酸、氨基酸和脂质的生物合成与ERneg状态相关。文本挖掘显示,迄今为止很少报道几种重要的代谢基因和酶,包括磷酸果糖激酶P(PFKP)、甘氨酰胺核苷酸转甲酰酶(GART)、赖氨酰羟化酶1(PLOD1)、精氨酸琥珀酸合成酶1(ASS1)、核苷二磷酸连接酶12(NUDT12)、脂肪酸还原酶1(FAR1)、磷酸二酯酶7A(PDE7A)、脂肪酸羟化酶1(FAHD1)、肌醇多磷酸激酶1(ITPK1)、 sorbin和SH3结构域包含蛋白1(SORD)、3-羟基酰基辅酶A脱水酶3(HACD3)、CDS2和细胞色素P450侧链裂解酶(PDSS1)。通过对代谢组学、蛋白质组学和转录组学数据进行多组学整合分析,确定了与ERneg肿瘤相关的代谢过程。总体结果表明,三羧酸循环回补反应、脯氨酸生物合成、复合脂质合成和底物循环机制在ERneg肿瘤中被激活。文本挖掘揭示了一些未被充分报道的基因,这些基因可能成为癌症治疗中药物靶点的新候选者。这里介绍的工作流程也可用于其他肿瘤类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02f1/6570467/b64b781e3545/oncotarget-10-3894-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验