Suppr超能文献

多机构对现代立体定向放射外科(SRS)治疗多发脑转移瘤方案的剂量学评估

Multi-Institutional Dosimetric Evaluation of Modern Day Stereotactic Radiosurgery (SRS) Treatment Options for Multiple Brain Metastases.

作者信息

Vergalasova Irina, Liu Haisong, Alonso-Basanta Michelle, Dong Lei, Li Jun, Nie Ke, Shi Wenyin, Teo Boon-Keng Kevin, Yu Yan, Yue Ning Jeff, Zou Wei, Li Taoran

机构信息

Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States.

Department of Radiation Oncology, Thomas Jefferson University Kimmel Cancer Center, Philadelphia, PA, United States.

出版信息

Front Oncol. 2019 Jun 7;9:483. doi: 10.3389/fonc.2019.00483. eCollection 2019.

Abstract

There are several popular treatment options currently available for stereotactic radiosurgery (SRS) of multiple brain metastases: Co sources and cone collimators around a spherical geometry (GammaKnife), multi-aperture dynamic conformal arcs on a linac (BrainLab Elements™ v1.5), and volumetric arc therapy on a linac (VMAT) calculated with either the conventional optimizer or with the Varian HyperArc™ solution. This study aimed to dosimetrically compare and evaluate the differences among these treatment options in terms of dose conformity to the tumor as well as dose sparing to the surrounding normal tissues. Sixteen patients and a total of 112 metastases were analyzed. Five plans were generated per patient: GammaKnife, Elements, HyperArc-VMAT, and two Manual-VMAT plans to evaluate different treatment planning styles. Manual-VMAT plans were generated by different institutions according to their own clinical planning standards. The following dosimetric parameters were extracted: RTOG and Paddick conformity indices, gradient index, total volume of brain receiving 12Gy, 6Gy, and 3Gy, and maximum doses to surrounding organs. The Wilcoxon signed rank test was applied to evaluate statistically significant differences ( < 0.05). For targets ≤ 1 cm, GammaKnife, HyperArc-VMAT and both Manual-VMAT plans achieved comparable conformity indices, all superior to Elements. However, GammaKnife resulted in the lowest gradient indices at these target sizes. HyperArc-VMAT performed similarly to GammaKnife for V parameters. For targets ≥ 1 cm, HyperArc-VMAT and Manual-VMAT plans resulted in superior conformity vs. GammaKnife and Elements. All SRS plans achieved clinically acceptable organs-at-risk dose constraints. Beam-on times were significantly longer for GammaKnife. Manual-VMAT and Elements resulted in shorter delivery times relative to Manual-VMAT and HyperArc-VMAT. The study revealed that Manual-VMAT and HyperArc-VMAT are capable of achieving similar low dose brain spillage and conformity as GammaKnife, while significantly minimizing beam-on time. For targets smaller than 1 cm in diameter, GammaKnife still resulted in superior gradient indices. The quality of the two sets of Manual-VMAT plans varied greatly based on planner and optimization constraint settings, whereas HyperArc-VMAT performed dosimetrically superior to the two Manual-VMAT plans.

摘要

目前,对于多发性脑转移瘤的立体定向放射外科治疗(SRS)有几种常用的治疗方案:围绕球形几何结构的钴源和锥形准直器(伽玛刀)、直线加速器上的多孔动态适形弧(BrainLab Elements™ v1.5)以及直线加速器上使用传统优化器或瓦里安HyperArc™解决方案计算的容积弧形调强放疗(VMAT)。本研究旨在从剂量适形于肿瘤以及对周围正常组织的剂量 sparing 方面,对这些治疗方案之间的差异进行剂量学比较和评估。分析了 16 例患者及总共 112 个转移瘤。每位患者生成 5 个计划:伽玛刀、Elements、HyperArc-VMAT 以及两个手动 VMAT 计划,以评估不同的治疗计划方式。手动 VMAT 计划由不同机构根据其自身的临床计划标准生成。提取了以下剂量学参数:RTOG 和帕迪克适形指数、梯度指数、接受 12Gy、6Gy 和 3Gy 照射的脑总体积以及周围器官的最大剂量。应用 Wilcoxon 符号秩检验来评估统计学上的显著差异(P<0.05)。对于直径≤1cm 的靶区,伽玛刀、HyperArc-VMAT 和两个手动 VMAT 计划的适形指数相当,均优于 Elements。然而,在这些靶区尺寸下,伽玛刀的梯度指数最低。对于 V 参数,HyperArc-VMAT 的表现与伽玛刀相似。对于直径≥1cm 的靶区,HyperArc-VMAT 和手动 VMAT 计划的适形性优于伽玛刀和 Elements。所有 SRS 计划均达到了临床上可接受的危及器官剂量限制。伽玛刀的照射时间明显更长。相对于手动 VMAT 和 HyperArc-VMAT,手动 VMAT 和 Elements 的治疗时间更短。该研究表明,手动 VMAT 和 HyperArc-VMAT 能够实现与伽玛刀相似的低剂量脑内剂量泄漏和适形性,同时显著缩短照射时间。对于直径小于 1cm 的靶区,伽玛刀的梯度指数仍然更优。两组手动 VMAT 计划的质量因计划者和优化约束设置的不同而有很大差异,而 HyperArc-VMAT 在剂量学上表现优于两个手动 VMAT 计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e162/6568036/cd203dd9603b/fonc-09-00483-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验