Suppr超能文献

基于判别式深度信念网络的心律失常自动分类方法

[Automatic classification method of arrhythmia based on discriminative deep belief networks].

作者信息

Song Lixin, Sun Dongzi, Wang Qian, Wang Yujing

机构信息

School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080,

School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Jun 25;36(3):444-452. doi: 10.7507/1001-5515.201810053.

Abstract

Existing arrhythmia classification methods usually use manual selection of electrocardiogram (ECG) signal features, so that the feature selection is subjective, and the feature extraction is complex, leaving the classification accuracy usually affected. Based on this situation, a new method of arrhythmia automatic classification based on discriminative deep belief networks (DDBNs) is proposed. The morphological features of heart beat signals are automatically extracted from the constructed generative restricted Boltzmann machine (GRBM), then the discriminative restricted Boltzmann machine (DRBM) with feature learning and classification ability is introduced, and arrhythmia classification is performed according to the extracted morphological features and RR interval features. In order to further improve the classification performance of DDBNs, DDBNs are converted to deep neural network (DNN) using the Softmax regression layer for supervised classification in this paper, and the network is fine-tuned by backpropagation. Finally, the Massachusetts Institute of Technology and Beth Israel Hospital Arrhythmia Database (MIT-BIH AR) is used for experimental verification. For training sets and test sets with consistent data sources, the overall classification accuracy of the method is up to 99.84% ± 0.04%. For training sets and test sets with inconsistent data sources, a small number of training sets are extended by the active learning (AL) method, and the overall classification accuracy of the method is up to 99.31% ± 0.23%. The experimental results show the effectiveness of the method in arrhythmia automatic feature extraction and classification. It provides a new solution for the automatic extraction of ECG signal features and classification for deep learning.

摘要

现有的心律失常分类方法通常采用人工选择心电图(ECG)信号特征,使得特征选择具有主观性,且特征提取复杂,导致分类准确率通常受到影响。基于这种情况,提出了一种基于判别深度信念网络(DDBNs)的心律失常自动分类新方法。从构建的生成受限玻尔兹曼机(GRBM)中自动提取心跳信号的形态特征,然后引入具有特征学习和分类能力的判别受限玻尔兹曼机(DRBM),并根据提取的形态特征和RR间期特征进行心律失常分类。为了进一步提高DDBNs的分类性能,本文使用Softmax回归层将DDBNs转换为深度神经网络(DNN)进行监督分类,并通过反向传播对网络进行微调。最后,使用麻省理工学院和贝斯以色列医院心律失常数据库(MIT - BIH AR)进行实验验证。对于数据源一致的训练集和测试集,该方法的总体分类准确率高达99.84%±0.04%。对于数据源不一致的训练集和测试集,通过主动学习(AL)方法扩展少量训练集,该方法的总体分类准确率高达99.31%±0.23%。实验结果表明了该方法在心律失常自动特征提取和分类方面的有效性。它为心电图信号特征的自动提取和深度学习分类提供了一种新的解决方案。

相似文献

1
[Automatic classification method of arrhythmia based on discriminative deep belief networks].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Jun 25;36(3):444-452. doi: 10.7507/1001-5515.201810053.
2
Classification of arrhythmia using hybrid networks.
J Med Syst. 2011 Dec;35(6):1617-30. doi: 10.1007/s10916-010-9439-6. Epub 2010 Mar 10.
3
LwF-ECG: Learning-without-forgetting approach for electrocardiogram heartbeat classification based on memory with task selector.
Comput Biol Med. 2021 Oct;137:104807. doi: 10.1016/j.compbiomed.2021.104807. Epub 2021 Aug 27.
4
Arrhythmia Classification of ECG Signals Using Hybrid Features.
Comput Math Methods Med. 2018 Nov 12;2018:1380348. doi: 10.1155/2018/1380348. eCollection 2018.
5
Automated inter-patient arrhythmia classification with dual attention neural network.
Comput Methods Programs Biomed. 2023 Jun;236:107560. doi: 10.1016/j.cmpb.2023.107560. Epub 2023 Apr 20.
6
Deep Learning-Based Data Augmentation and Model Fusion for Automatic Arrhythmia Identification and Classification Algorithms.
Comput Intell Neurosci. 2022 Aug 11;2022:1577778. doi: 10.1155/2022/1577778. eCollection 2022.
7
An Improved Convolutional Neural Network Based Approach for Automated Heartbeat Classification.
J Med Syst. 2019 Dec 18;44(2):35. doi: 10.1007/s10916-019-1511-2.
8
Online Automatic Diagnosis System of Cardiac Arrhythmias Based on MIT-BIH ECG Database.
J Healthc Eng. 2021 Dec 16;2021:1819112. doi: 10.1155/2021/1819112. eCollection 2021.
9
A novel application of deep learning for single-lead ECG classification.
Comput Biol Med. 2018 Aug 1;99:53-62. doi: 10.1016/j.compbiomed.2018.05.013. Epub 2018 Jun 4.

引用本文的文献

1
[Research on high-efficiency electrocardiogram automatic classification based on autoregressive moving average model fitting].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):848-857. doi: 10.7507/1001-5515.202101054.

本文引用的文献

1
A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification.
Comput Biol Med. 2018 May 1;96:189-202. doi: 10.1016/j.compbiomed.2018.03.016. Epub 2018 Mar 28.
2
Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals.
Comput Biol Med. 2018 Mar 1;94:19-26. doi: 10.1016/j.compbiomed.2017.12.023. Epub 2018 Jan 2.
3
Patient-Specific Deep Architectural Model for ECG Classification.
J Healthc Eng. 2017;2017:4108720. doi: 10.1155/2017/4108720. Epub 2017 May 7.
5
On the Detection of Myocadial Scar Based on ECG/VCG Analysis.
IEEE Trans Biomed Eng. 2013 Dec;60(12):3399-409. doi: 10.1109/TBME.2013.2279998. Epub 2013 Aug 29.
6
Time-based compression and classification of heartbeats.
IEEE Trans Biomed Eng. 2012 Jun;59(6):1641-8. doi: 10.1109/TBME.2012.2191407. Epub 2012 Mar 20.
7
Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients.
Comput Methods Programs Biomed. 2012 Mar;105(3):257-67. doi: 10.1016/j.cmpb.2011.10.002. Epub 2011 Nov 3.
8
Reducing the dimensionality of data with neural networks.
Science. 2006 Jul 28;313(5786):504-7. doi: 10.1126/science.1127647.
9
Automatic classification of heartbeats using ECG morphology and heartbeat interval features.
IEEE Trans Biomed Eng. 2004 Jul;51(7):1196-206. doi: 10.1109/TBME.2004.827359.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验