Suppr超能文献

基于自回归移动平均模型拟合的高效心电图自动分类研究

[Research on high-efficiency electrocardiogram automatic classification based on autoregressive moving average model fitting].

作者信息

Yan Huijun, Mo Site, Huang Hua, Liu Yan

机构信息

School of Electrical Engineering, Sichuan University, Chengdu 610065, P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):848-857. doi: 10.7507/1001-5515.202101054.

Abstract

The automatic detection of arrhythmia is of great significance for the early prevention and diagnosis of cardiovascular diseases. Traditional arrhythmia diagnosis is limited by expert knowledge and complex algorithms, and lacks multi-dimensional feature representation capabilities, which is not suitable for wearable electrocardiogram (ECG) monitoring equipment. This study proposed a feature extraction method based on autoregressive moving average (ARMA) model fitting. Different types of heartbeats were used as model inputs, and the characteristic of fast and smooth signal was used to select the appropriate order for the arrhythmia signal to perform coefficient fitting, and complete the ECG feature extraction. The feature vectors were input to the support vector machine (SVM) classifier and K-nearest neighbor classifier (KNN) for automatic ECG classification. MIT-BIH arrhythmia database and MIT-BIH atrial fibrillation database were used to verify in the experiment. The experimental results showed that the feature engineering composed of the fitting coefficients of the ARMA model combined with the SVM classifier obtained a recall rate of 98.2% and a precision rate of 98.4%, and the index was 98.3%. The algorithm has high performance, meets the needs of clinical diagnosis, and has low algorithm complexity. It can use low-power embedded processors for real-time calculations, and it's suitable for real-time warning of wearable ECG monitoring equipment.

摘要

心律失常的自动检测对于心血管疾病的早期预防和诊断具有重要意义。传统的心律失常诊断受专家知识和复杂算法的限制,缺乏多维度特征表示能力,不适用于可穿戴心电图(ECG)监测设备。本研究提出了一种基于自回归移动平均(ARMA)模型拟合的特征提取方法。将不同类型的心跳作为模型输入,利用信号快速且平滑的特性为心律失常信号选择合适的阶数进行系数拟合,完成心电图特征提取。将特征向量输入支持向量机(SVM)分类器和K近邻分类器(KNN)进行心电图自动分类。实验采用麻省理工学院 - 贝斯以色列女执事医疗中心心律失常数据库(MIT - BIH arrhythmia database)和麻省理工学院 - 贝斯以色列女执事医疗中心房颤数据库(MIT - BIH atrial fibrillation database)进行验证。实验结果表明,由ARMA模型的拟合系数与SVM分类器组成的特征工程获得了98.2%的召回率和98.4%的精确率,F1值为98.3%。该算法具有高性能,满足临床诊断需求,且算法复杂度低。它可以使用低功耗嵌入式处理器进行实时计算,适用于可穿戴ECG监测设备的实时预警。

相似文献

1
[Research on high-efficiency electrocardiogram automatic classification based on autoregressive moving average model fitting].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):848-857. doi: 10.7507/1001-5515.202101054.
2
[Arrhythmia heartbeats classification based on neighborhood preserving embedding algorithm].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2017 Feb;34(1):1-6. doi: 10.7507/1001-5515.201605045.
3
[An Atrial Fibrillation Classification Method Study Based on BP Neural Network and SVM].
Zhongguo Yi Liao Qi Xie Za Zhi. 2023 May 30;47(3):258-263. doi: 10.3969/j.issn.1671-7104.2023.03.005.
4
Ensemble classifier fostered detection of arrhythmia using ECG data.
Med Biol Eng Comput. 2023 Sep;61(9):2453-2466. doi: 10.1007/s11517-023-02839-6. Epub 2023 May 5.
5
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.
Sensors (Basel). 2016 Oct 20;16(10):1744. doi: 10.3390/s16101744.
9
A novel approach for automatic detection of Atrial Fibrillation based on Inter Beat Intervals and Support Vector Machine.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:2039-2042. doi: 10.1109/EMBC.2017.8037253.
10
A Real-Time Arrhythmia Heartbeats Classification Algorithm Using Parallel Delta Modulations and Rotated Linear-Kernel Support Vector Machines.
IEEE Trans Biomed Eng. 2020 Apr;67(4):978-986. doi: 10.1109/TBME.2019.2926104. Epub 2019 Jul 1.

本文引用的文献

1
[A fetal electrocardiogram signal extraction method based on long short term memory network optimized by genetic algorithm].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Apr 25;38(2):257-267. doi: 10.7507/1001-5515.202004063.
2
The role of molecular mechanism of Ten-Eleven Translocation2 (TET2) family proteins in pathogenesis of cardiovascular diseases (CVDs).
Mol Biol Rep. 2020 Jul;47(7):5503-5509. doi: 10.1007/s11033-020-05602-4. Epub 2020 Jun 22.
3
Automatic Detection of Arrhythmia Based on Multi-Resolution Representation of ECG Signal.
Sensors (Basel). 2020 Mar 12;20(6):1579. doi: 10.3390/s20061579.
4
[Automatic classification method of arrhythmia based on discriminative deep belief networks].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Jun 25;36(3):444-452. doi: 10.7507/1001-5515.201810053.
5
A new approach for arrhythmia classification using deep coded features and LSTM networks.
Comput Methods Programs Biomed. 2019 Jul;176:121-133. doi: 10.1016/j.cmpb.2019.05.004. Epub 2019 May 10.
6
Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats.
Comput Biol Med. 2018 Nov 1;102:278-287. doi: 10.1016/j.compbiomed.2018.06.002. Epub 2018 Jun 5.
7
[Research on malignant arrhythmia detection algorithm using neural network optimized by genetic algorithm].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2017 Jun 1;34(3):421-430. doi: 10.7507/1001-5515.201612066.
8
Inter-Patient ECG Heartbeat Classification with Temporal VCG Optimized by PSO.
Sci Rep. 2017 Sep 5;7(1):10543. doi: 10.1038/s41598-017-09837-3.
9
Baseline wander removal of electrocardiogram signals using multivariate empirical mode decomposition.
Healthc Technol Lett. 2015 Nov 26;2(6):164-6. doi: 10.1049/htl.2015.0029. eCollection 2015 Dec.
10
R-peaks detection based on stationary wavelet transform.
Comput Methods Programs Biomed. 2015 Oct;121(3):149-60. doi: 10.1016/j.cmpb.2015.06.003. Epub 2015 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验