Suppr超能文献

利用基于地理信息系统的机器学习技术评估滑坡易发性模型中地形变量的尺度效应。

Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques.

作者信息

Chang Kuan-Tsung, Merghadi Abdelaziz, Yunus Ali P, Pham Binh Thai, Dou Jie

机构信息

Department of Civil Engineering and Environmental Informatics, Minghsin University of Science and Technology, Hsin-Chu, 304, Taiwan.

Research Laboratory of Sedimentary Environment, Mineral and Water resources of Eastern Algeria, Larbi Tebessi University, Tebessa, Algeria.

出版信息

Sci Rep. 2019 Aug 23;9(1):12296. doi: 10.1038/s41598-019-48773-2.

Abstract

The quality of digital elevation models (DEMs), as well as their spatial resolution, are important issues in geomorphic studies. However, their influence on landslide susceptibility mapping (LSM) remains poorly constrained. This work determined the scale dependency of DEM-derived geomorphometric factors in LSM using a 5 m LiDAR DEM, LiDAR resampled 30 m DEM, and a 30 m ASTER DEM. To verify the validity of our approach, we first compiled an inventory map comprising of 267 landslides for Sihjhong watershed, Taiwan, from 2004 to 2014. Twelve landslide causative factors were then generated from the DEMs and ancillary data. Afterward, popular statistical and machine learning techniques, namely, logistic regression (LR), random forest (RF), and support vector machine (SVM) were implemented to produce the LSM. The accuracies of models were evaluated by overall accuracy, kappa index and the receiver operating characteristic curve indicators. The highest accuracy was attained from the resampled 30 m LiDAR DEM derivatives, indicating a fine-resolution topographic data does not necessarily achieve the best performance. Additionally, RF attained superior performance between the three presented models. Our findings could contribute to opt for an appropriate DEM resolution for mapping landslide hazard in vulnerable areas.

摘要

数字高程模型(DEM)的质量及其空间分辨率是地貌研究中的重要问题。然而,它们对滑坡易发性制图(LSM)的影响仍未得到充分限制。这项工作使用5米激光雷达DEM、重采样为30米的激光雷达DEM和30米的ASTER DEM,确定了LSM中DEM衍生的地形几何因子的尺度依赖性。为了验证我们方法的有效性,我们首先编制了一张2004年至2014年台湾四湖流域267处滑坡的清单图。然后从DEM和辅助数据中生成了12个滑坡成因因子。随后,采用流行的统计和机器学习技术,即逻辑回归(LR)、随机森林(RF)和支持向量机(SVM)来生成LSM。通过总体精度、kappa指数和接收器操作特征曲线指标对模型的准确性进行评估。重采样为30米的激光雷达DEM衍生数据获得了最高精度,这表明高分辨率地形数据不一定能取得最佳效果。此外,在提出的三个模型中,RF表现最佳。我们的研究结果有助于为在脆弱地区绘制滑坡灾害图选择合适的DEM分辨率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab6/6707277/ea1739ec1833/41598_2019_48773_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验