Suppr超能文献

利用遗传算法和二叉回归树预测卫生人员的计算机视觉综合征。

Prediction of Computer Vision Syndrome in Health Personnel by Means of Genetic Algorithms and Binary Regression Trees.

机构信息

Central University Hospital of Asturias, 33011 Oviedo, Spain.

Department of Mathematics, University of Oviedo, 33007 Oviedo, Spain.

出版信息

Sensors (Basel). 2019 Jun 22;19(12):2800. doi: 10.3390/s19122800.

Abstract

One of the major consequences of the digital revolution has been the increase in the use of electronic devices in health services. Despite their remarkable advantages, though, the use of computers and other visual display terminals for a prolonged time may have negative effects on vision, leading to a greater risk of Computer Vision Syndrome (CVS) among their users. In this study, the importance of ocular and visual symptoms related to CVS was evaluated, and the factors associated with CVS were studied, with the help of an algorithm based on regression trees and genetic algorithms. The performance of this proposed model was also tested to check its ability to predict how prone a worker is to suffering from CVS. The findings of the present research confirm a high prevalence of CVS in healthcare workers, and associate CVS with a longer duration of occupation and higher daily computer usage.

摘要

数字革命的主要后果之一是在卫生服务中增加了电子设备的使用。尽管计算机和其他可视显示终端具有显著的优势,但长时间使用这些设备可能会对视力产生负面影响,导致其使用者患计算机视觉综合征(CVS)的风险增加。在这项研究中,我们评估了与 CVS 相关的眼部和视觉症状的重要性,并借助基于回归树和遗传算法的算法研究了与 CVS 相关的因素。还测试了该模型的性能,以检查其预测工人易患 CVS 的能力。本研究的结果证实了医疗保健工作者中 CVS 的高患病率,并将 CVS 与较长的职业时间和更高的日常计算机使用相关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dad1/6630344/05c67c4ea65d/sensors-19-02800-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验