Suppr超能文献

基于卷积和随机游走的推断进行稳健的单细胞 Hi-C 聚类。

Robust single-cell Hi-C clustering by convolution- and random-walk-based imputation.

机构信息

Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037.

Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093.

出版信息

Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):14011-14018. doi: 10.1073/pnas.1901423116. Epub 2019 Jun 24.

Abstract

Three-dimensional genome structure plays a pivotal role in gene regulation and cellular function. Single-cell analysis of genome architecture has been achieved using imaging and chromatin conformation capture methods such as Hi-C. To study variation in chromosome structure between different cell types, computational approaches are needed that can utilize sparse and heterogeneous single-cell Hi-C data. However, few methods exist that are able to accurately and efficiently cluster such data into constituent cell types. Here, we describe scHiCluster, a single-cell clustering algorithm for Hi-C contact matrices that is based on imputations using linear convolution and random walk. Using both simulated and real single-cell Hi-C data as benchmarks, scHiCluster significantly improves clustering accuracy when applied to low coverage datasets compared with existing methods. After imputation by scHiCluster, topologically associating domain (TAD)-like structures (TLSs) can be identified within single cells, and their consensus boundaries were enriched at the TAD boundaries observed in bulk cell Hi-C samples. In summary, scHiCluster facilitates visualization and comparison of single-cell 3D genomes.

摘要

三维基因组结构在基因调控和细胞功能中起着关键作用。使用成像和染色质构象捕获方法(如 Hi-C)已经可以实现单细胞基因组结构分析。为了研究不同细胞类型之间染色体结构的变异,需要能够利用稀疏和异质的单细胞 Hi-C 数据的计算方法。然而,能够准确有效地将此类数据聚类为组成细胞类型的方法很少。在这里,我们描述了 scHiCluster,这是一种用于 Hi-C 接触矩阵的单细胞聚类算法,它基于使用线性卷积和随机游走进行的推断。使用模拟和真实的单细胞 Hi-C 数据作为基准,与现有方法相比,scHiCluster 在应用于低覆盖率数据集时显著提高了聚类准确性。在 scHiCluster 推断之后,可以在单个细胞内识别拓扑关联域 (TAD) 样结构 (TLS),并且它们的共识边界在批量细胞 Hi-C 样本中观察到的 TAD 边界处富集。总之,scHiCluster 促进了单细胞 3D 基因组的可视化和比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f06b/6628819/b6673cf38172/pnas.1901423116fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验