Suppr超能文献

通过结构导向的蛋白质工程实现微生物间苯二酚转化。

Enabling microbial syringol conversion through structure-guided protein engineering.

机构信息

Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717.

Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13970-13976. doi: 10.1073/pnas.1820001116. Epub 2019 Jun 24.

Abstract

Microbial conversion of aromatic compounds is an emerging and promising strategy for valorization of the plant biopolymer lignin. A critical and often rate-limiting reaction in aromatic catabolism is -aryl-demethylation of the abundant aromatic methoxy groups in lignin to form diols, which enables subsequent oxidative aromatic ring-opening. Recently, a cytochrome P450 system, GcoAB, was discovered to demethylate guaiacol (2-methoxyphenol), which can be produced from coniferyl alcohol-derived lignin, to form catechol. However, native GcoAB has minimal ability to demethylate syringol (2,6-dimethoxyphenol), the analogous compound that can be produced from sinapyl alcohol-derived lignin. Despite the abundance of sinapyl alcohol-based lignin in plants, no pathway for syringol catabolism has been reported to date. Here we used structure-guided protein engineering to enable microbial syringol utilization with GcoAB. Specifically, a phenylalanine residue (GcoA-F169) interferes with the binding of syringol in the active site, and on mutation to smaller amino acids, efficient syringol -demethylation is achieved. Crystallography indicates that syringol adopts a productive binding pose in the variant, which molecular dynamics simulations trace to the elimination of steric clash between the highly flexible side chain of GcoA-F169 and the additional methoxy group of syringol. Finally, we demonstrate in vivo syringol turnover in KT2440 with the GcoA-F169A variant. Taken together, our findings highlight the significant potential and plasticity of cytochrome P450 aromatic -demethylases in the biological conversion of lignin-derived aromatic compounds.

摘要

微生物转化芳香族化合物是一种新兴且有前途的策略,可用于提高植物生物聚合物木质素的价值。芳香族分解代谢中的一个关键且通常是限速反应是 -芳基-脱甲氧基化,即将木质素中丰富的芳基甲氧基脱甲基化为二醇,从而使随后的氧化芳环开环成为可能。最近,发现细胞色素 P450 系统 GcoAB 可以将愈创木酚(2-甲氧基苯酚)脱甲基化为儿茶酚,而愈创木酚可以由松柏醇衍生的木质素产生。然而,天然 GcoAB 对丁香酚(2,6-二甲氧基苯酚)的脱甲基能力极小,丁香酚是可以由丁香醇衍生的木质素产生的类似化合物。尽管植物中丁香醇基木质素的含量丰富,但迄今为止尚未报道丁香酚的代谢途径。在这里,我们使用基于结构的蛋白质工程使 GcoAB 能够微生物利用丁香酚。具体来说,一个苯丙氨酸残基(GcoA-F169)干扰了活性部位中丁香酚的结合,而当突变为较小的氨基酸时,有效地实现了丁香酚的脱甲基化。晶体学表明,在变体中,丁香酚采用了生产性结合构象,分子动力学模拟追踪到消除了 GcoA-F169 高度灵活的侧链与丁香酚的额外甲氧基之间的空间冲突。最后,我们用 GcoA-F169A 变体在 KT2440 中证明了体内丁香酚的周转。总之,我们的发现强调了细胞色素 P450 芳香族脱甲基酶在木质素衍生的芳香族化合物生物转化中的重要潜力和可塑性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75f/6628648/9f5ef761f3f6/pnas.1820001116scheme01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验