Suppr超能文献

用于骨盆手术规划的 MRI 三维分割软件工具的综合评价

Comprehensive Review of 3D Segmentation Software Tools for MRI Usable for Pelvic Surgery Planning.

机构信息

LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France.

IMAG2 Laboratory, Imagine Institute, Paris, France.

出版信息

J Digit Imaging. 2020 Feb;33(1):99-110. doi: 10.1007/s10278-019-00239-7.

Abstract

Patient-specific 3D modeling is the first step towards image-guided surgery, the actual revolution in surgical care. Pediatric and adolescent patients with rare tumors and malformations should highly benefit from these latest technological innovations, allowing personalized tailored surgery. This study focused on the pelvic region, located at the crossroads of the urinary, digestive, and genital channels with important vascular and nervous structures. The aim of this study was to evaluate the performances of different software tools to obtain patient-specific 3D models, through segmentation of magnetic resonance images (MRI), the reference for pediatric pelvis examination. Twelve software tools freely available on the Internet and two commercial software tools were evaluated using T2-w MRI and diffusion-weighted MRI images. The software tools were rated according to eight criteria, evaluated by three different users: automatization degree, segmentation time, usability, 3D visualization, presence of image registration tools, tractography tools, supported OS, and potential extension (i.e., plugins). A ranking of software tools for 3D modeling of MRI medical images, according to the set of predefined criteria, was given. This ranking allowed us to elaborate guidelines for the choice of software tools for pelvic surgical planning in pediatric patients. The best-ranked software tools were Myrian Studio, ITK-SNAP, and 3D Slicer, the latter being especially appropriate if nerve fibers should be included in the 3D patient model. To conclude, this study proposed a comprehensive review of software tools for 3D modeling of the pelvis according to a set of eight criteria and delivered specific conclusions for pediatric and adolescent patients that can be directly applied to clinical practice.

摘要

患者特定的 3D 建模是图像引导手术的第一步,这是手术护理的真正革命。患有罕见肿瘤和畸形的儿科和青少年患者将从这些最新的技术创新中受益匪浅,这些创新允许进行个性化定制手术。本研究集中在骨盆区域,该区域位于泌尿、消化和生殖通道的交汇处,有重要的血管和神经结构。本研究的目的是评估不同软件工具通过对磁共振成像 (MRI) 的分割来获得患者特定的 3D 模型的性能,MRI 是小儿骨盆检查的参考。评估了 12 种免费的互联网上的软件工具和 2 种商业软件工具,使用 T2-w MRI 和弥散加权 MRI 图像。根据三个不同用户评估的 8 个标准对软件工具进行评分:自动化程度、分割时间、可用性、3D 可视化、是否存在图像配准工具、示踪工具、支持的操作系统以及潜在的扩展(即插件)。根据一组预定义的标准,对 MRI 医学图像的 3D 建模软件工具进行了排名。该排名使我们能够制定用于小儿患者骨盆手术计划的软件工具选择指南。排名最高的软件工具是 Myrian Studio、ITK-SNAP 和 3D Slicer,如果要将神经纤维包含在 3D 患者模型中,则后者特别合适。总之,本研究根据一组 8 个标准对骨盆的 3D 建模软件工具进行了全面评估,并为儿科和青少年患者提供了具体的结论,这些结论可以直接应用于临床实践。

相似文献

1
Comprehensive Review of 3D Segmentation Software Tools for MRI Usable for Pelvic Surgery Planning.
J Digit Imaging. 2020 Feb;33(1):99-110. doi: 10.1007/s10278-019-00239-7.
2
MRI-based 3D pelvic autonomous innervation: a first step towards image-guided pelvic surgery.
Eur Radiol. 2014 Aug;24(8):1989-97. doi: 10.1007/s00330-014-3211-0. Epub 2014 May 17.
4
Three-dimensional volume rendering of pelvic models and paraurethral masses based on MRI cross-sectional images.
Int Urogynecol J. 2017 Oct;28(10):1579-1587. doi: 10.1007/s00192-017-3317-4. Epub 2017 Mar 28.
9
Fast and automatic bone segmentation and registration of 3D ultrasound to CT for the full pelvic anatomy: a comparative study.
Int J Comput Assist Radiol Surg. 2018 Oct;13(10):1515-1524. doi: 10.1007/s11548-018-1788-5. Epub 2018 May 26.
10
Clinical value of pelvic 3-dimensional magnetic resonance image reconstruction in anorectal malformations.
J Pediatr Surg. 2009 Dec;44(12):2369-74. doi: 10.1016/j.jpedsurg.2009.07.074.

引用本文的文献

1
Considerations on Image Preprocessing Techniques Required by Deep Learning Models. The Case of the Knee MRIs.
Maedica (Bucur). 2024 Sep;19(3):526-535. doi: 10.26574/maedica.2024.19.3.526.
2
Use of 3D foot and ankle puzzle enhances student understanding of the skeletal anatomy in the early years of medical school.
Surg Radiol Anat. 2024 Sep;46(9):1429-1438. doi: 10.1007/s00276-024-03439-1. Epub 2024 Jul 26.
4
POP-Q Versus Upright MRI Distance Measurements: A Prospective Study in Patients with POP.
Int Urogynecol J. 2024 Jun;35(6):1255-1261. doi: 10.1007/s00192-024-05802-7. Epub 2024 May 14.
5
Automated 2D and 3D finite element overclosure adjustment and mesh morphing using generalized regression neural networks.
Med Eng Phys. 2024 Apr;126:104136. doi: 10.1016/j.medengphy.2024.104136. Epub 2024 Feb 27.
6
Setting up a biomodeling, virtual planning, and three-dimensional printing service in Uruguay.
Pediatr Radiol. 2024 Mar;54(3):438-449. doi: 10.1007/s00247-024-05864-1. Epub 2024 Feb 7.
7
Robotic-assisted laparoscopy in pediatric surgical oncology: a narrative review.
Transl Pediatr. 2023 Dec 26;12(12):2256-2266. doi: 10.21037/tp-23-251. Epub 2023 Dec 18.
8
Unique Anatomical Features of the Discoid Lateral Meniscus via Three-Dimensional MRI.
Cureus. 2023 Sep 29;15(9):e46188. doi: 10.7759/cureus.46188. eCollection 2023 Sep.
9
Clinical applications of radiomics in non-small cell lung cancer patients with immune checkpoint inhibitor-related pneumonitis.
Front Immunol. 2023 Sep 20;14:1251645. doi: 10.3389/fimmu.2023.1251645. eCollection 2023.
10
The Third Dimension: 3D Printed Replicas and Other Alternatives to Cadaver-Based Learning.
Adv Exp Med Biol. 2023;1421:39-61. doi: 10.1007/978-3-031-30379-1_3.

本文引用的文献

1
Image-guided surgery.
Curr Probl Surg. 2015 Dec;52(12):476-520. doi: 10.1067/j.cpsurg.2015.10.001. Epub 2015 Oct 22.
2
A Survey of DICOM Viewer Software to Integrate Clinical Research and Medical Imaging.
J Digit Imaging. 2016 Apr;29(2):206-15. doi: 10.1007/s10278-015-9833-1.
4
Open source software in a practical approach for post processing of radiologic images.
Radiol Med. 2015 Mar;120(3):309-23. doi: 10.1007/s11547-014-0437-5. Epub 2014 Jul 15.
5
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
6
3D Slicer as an image computing platform for the Quantitative Imaging Network.
Magn Reson Imaging. 2012 Nov;30(9):1323-41. doi: 10.1016/j.mri.2012.05.001. Epub 2012 Jul 6.
7
FreeSurfer.
Neuroimage. 2012 Aug 15;62(2):774-81. doi: 10.1016/j.neuroimage.2012.01.021. Epub 2012 Jan 10.
8
FSL.
Neuroimage. 2012 Aug 15;62(2):782-90. doi: 10.1016/j.neuroimage.2011.09.015. Epub 2011 Sep 16.
9
Value of multidetector computed tomography image segmentation for preoperative planning in general surgery.
Surg Endosc. 2012 Mar;26(3):616-26. doi: 10.1007/s00464-011-1920-x. Epub 2011 Sep 23.
10
3D printing based on imaging data: review of medical applications.
Int J Comput Assist Radiol Surg. 2010 Jul;5(4):335-41. doi: 10.1007/s11548-010-0476-x. Epub 2010 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验