Suppr超能文献

基于响应面法的碳点绿色合成用于头孢曲松的痕量测定。

Carbon Dots Green Synthesis for Ultra-Trace Determination of Ceftriaxone Using Response Surface Methodology.

机构信息

Research Laboratory of Analytical Chemistry, Department of Chemistry, Faculty of Science, Islamic Azad University Central Tehran Branch, Tehran, Iran.

Department of Marine Chemistry, Faculty of Marine Science & Marine Science Research Institute, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.

出版信息

J Fluoresc. 2019 Jul;29(4):887-897. doi: 10.1007/s10895-019-02400-5. Epub 2019 Jun 25.

Abstract

The present study sought to develop a facile and green synthetic approach for producing fluorescent carbon dots (CDs) from a natural biomass using aqueous extraction of carbonized blue crab shell. Spherical carbon dots (6.00 ± 3.0 nm) exhibited an extended emission range with excellent quantum yield (14.5 ± 3.5%). In order to measure ceftriaxone, we offered a simple and sensitive method, based on fluorescence quenching of carbon dots in plasma and water with recovery values of 94.5-104.1%. Furthermore, with usage of central composite design (CCD) based response surface methodology (RSM); we optimized the effect of different factors. In addition, ANOVA evaluated the accuracy and suitability of quadratic model. Under optimal conditions, fluorescence quenching revealed a sensitive response in the concentration range of 20-1000 nM with the limit of detection 9.0 nM for ceftriaxone. Finally, carbon dots-based fluorescence quenching procedure was able to quantify ceftriaxone in plasma, as well as mineral and tap water. Spiked samples achieved satisfactory efficiencies.

摘要

本研究旨在开发一种简便、绿色的合成方法,从碳化蓝蟹壳的水溶液中提取天然生物质来制备荧光碳点(CDs)。球形碳点(6.00±3.0nm)具有较宽的发射范围和优异的量子产率(14.5±3.5%)。为了测定头孢曲松,我们提出了一种简单灵敏的方法,基于等离子体和水中碳点的荧光猝灭,回收率为 94.5-104.1%。此外,我们还使用基于中心复合设计(CCD)的响应面法(RSM)优化了不同因素的影响。此外,方差分析评估了二次模型的准确性和适用性。在最佳条件下,荧光猝灭法在 20-1000nM 的浓度范围内表现出灵敏的响应,头孢曲松的检测限为 9.0nM。最后,基于碳点的荧光猝灭法能够定量测定血浆、矿泉水和自来水样品中的头孢曲松。加标样品的效率令人满意。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验