Suppr超能文献

固态微孔中的增强型双极电化学:通过无线电化学发光成像进行演示。

Enhanced Bipolar Electrochemistry at Solid-State Micropores: Demonstration by Wireless Electrochemiluminescence Imaging.

作者信息

Ismail Abdulghani, Voci Silvia, Pham Pascale, Leroy Loïc, Maziz Ali, Descamps Lucie, Kuhn Alexander, Mailley Pascal, Livache Thierry, Buhot Arnaud, Leichlé Thierry, Bouchet-Spinelli Aurélie, Sojic Neso

机构信息

Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES , 38000 Grenoble , France.

Univ. Bordeaux, CNRS, Bordeaux INP, ISM,UMR 5255 , F-33400 , Talence , France.

出版信息

Anal Chem. 2019 Jul 16;91(14):8900-8907. doi: 10.1021/acs.analchem.9b00559. Epub 2019 Jun 26.

Abstract

Bipolar electrochemistry (BPE) is a powerful method based on the wireless polarization of a conductive object that induces the asymmetric electroactivity at its two extremities. A key physical limitation of BPE is the size of the conductive object because the shorter the object, the larger is the potential necessary for sufficient polarization. Micrometric and nanometric objects are thus extremely difficult to address by BPE due to the very high potentials required, in the order of tens of kV or more. Herein, the synergetic actions of BPE and of planar micropores integrated in a microfluidic device lead to the spatial confinement of the potential drop at the level of the solid-state micropore, and thus to a locally enhanced polarization of a bipolar electrode. Electrochemiluminescence (ECL) is emitted in half of the electroactive micropore and reveals the asymmetric polarization in this spatial restriction. Micrometric deoxidized silicon electrodes located in the micropore are polarized at a very low potential (7 V), which is more than 2 orders of magnitude lower compared to the classic bipolar configurations. This behavior is intrinsically associated with the unique properties of the micropores, where the sharp potential drop is focused. The presented approach offers exciting perspectives for BPE of micro/nano-objects, such as dynamic BPE with objects passing through the pores or wireless ECL-emitting micropores.

摘要

双极电化学(BPE)是一种基于导电物体无线极化的强大方法,该方法会在其两端诱导不对称电活性。BPE的一个关键物理限制是导电物体的尺寸,因为物体越短,实现足够极化所需的电势就越大。因此,由于所需电势非常高,达到数十千伏或更高,微米级和纳米级物体极难通过BPE处理。在此,BPE与集成在微流控装置中的平面微孔的协同作用导致固态微孔处电势降的空间限制,从而导致双极电极局部极化增强。电化学发光(ECL)在电活性微孔的一半中发射,并揭示了这种空间限制中的不对称极化。位于微孔中的微米级脱氧硅电极在非常低的电势(7V)下极化,与经典双极配置相比,该电势低了两个多数量级。这种行为本质上与微孔的独特性质相关,在微孔中尖锐电势降集中于此。所提出的方法为微/纳米物体的BPE提供了令人兴奋的前景,例如物体穿过孔隙的动态BPE或无线ECL发射微孔。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验