Zhao Yiran, Bouffier Laurent, Xu Guobao, Loget Gabriel, Sojic Neso
Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226 Rennes F-35000 France
University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 Pessac 33607 France
Chem Sci. 2022 Jan 28;13(9):2528-2550. doi: 10.1039/d1sc06987j. eCollection 2022 Mar 2.
Electrochemiluminescence (ECL) is the light production triggered by reactions at the electrode surface. Its intrinsic features based on a dual electrochemical/photophysical nature have made it an attractive and powerful method across diverse fields in applied and fundamental research. Herein, we review the combination of ECL with semiconductor (SC) materials presenting various typical dimensions and structures, which has opened new uses of ECL and offered exciting opportunities for (bio)sensing and imaging. In particular, we highlight this particularly rich domain at the interface between photoelectrochemistry, SC material chemistry and analytical chemistry. After an introduction to the ECL and SC fundamentals, we gather the recent advances with representative examples of new strategies to generate ECL in original configurations. Indeed, bulk SC can be used as electrode materials with unusual ECL properties or light-addressable systems. At the nanoscale, the SC nanocrystals or quantum dots (QDs) constitute excellent bright ECL nano-emitters with tuneable emission wavelengths and remarkable stability. Finally, the challenges and future prospects are discussed for the design of new detection strategies in (bio)analytical chemistry, light-addressable systems, imaging or infrared devices.
电化学发光(ECL)是由电极表面反应引发的光产生过程。基于电化学/光物理双重性质的固有特性,使其成为应用研究和基础研究各个领域中一种有吸引力且强大的方法。在此,我们综述了电化学发光与呈现各种典型尺寸和结构的半导体(SC)材料的结合,这为电化学发光开辟了新的应用,并为(生物)传感和成像提供了令人兴奋的机会。特别是,我们强调了光电化学、半导体材料化学和分析化学界面处这个特别丰富的领域。在介绍了电化学发光和半导体的基本原理之后,我们收集了近期的进展,并给出了在原始配置中产生电化学发光的新策略的代表性示例。实际上,体相半导体可以用作具有异常电化学发光特性的电极材料或光寻址系统。在纳米尺度上,半导体纳米晶体或量子点(QD)构成了出色的明亮电化学发光纳米发光体,具有可调节的发射波长和显著的稳定性。最后,讨论了在(生物)分析化学、光寻址系统、成像或红外器件中设计新检测策略所面临的挑战和未来前景。