Department of Neuroscience, Baylor College of Medicine, Houston, Texas.
Center for Neural Science and Tandon School of Engineering, New York University, New York, New York.
J Neurophysiol. 2019 Sep 1;122(3):1274-1287. doi: 10.1152/jn.00136.2019. Epub 2019 Jun 26.
In a recent study, Shinder and Taube (Shinder ME, Taube JS. 121: 4-37, 2019) concluded that head direction cells in the anterior thalamus of rats are tuned to one-dimensional (1D, yaw-only) motion, in contrast to recent findings in bats, mice, and rats. Here we reinterpret the author's experimental results using model comparison and demonstrate that, contrary to their conclusions, experimental data actually supports the dual-axis rule (lson JJ, Jeffery KJ. 119: 192-208, 2018) and tilted azimuth model (Laurens J, Angelaki DE. 97: 275-289, 2018), where head direction cells use gravity to integrate 3D rotation signals about all cardinal axes of the head. We further show that the Shinder and Taube study is inconclusive regarding the presence of vertical orientation tuning; i.e., whether head direction cells encode 3D orientation in the horizontal and vertical planes conjunctively. Using model simulations, we demonstrate that, even if 3D tuning existed, the experimental protocol and data analyses used by Shinder and Taube would not have revealed it. We conclude that the actual experimental data of Shinder and Taube are compatible with the 3D properties of head direction cells discovered by other groups, yet incorrect conclusions were reached because of incomplete and qualitative analyses. We conducted a model-based analysis previously published data where rat head direction cells were recorded during three-dimensional motion (Shinder ME, Taube JS. 121: 4-37, 2019). We found that these data corroborate previous models ("dual-axis rule," Page HJI, Wilson JJ, Jeffery KJ. 119: 192-208, 2018; and "tilted azimuth model," Laurens J, Angelaki DE. 97: 275-289, 2018) where head direction cells integrate rotations along all three head axes to encode head orientation in a gravity-anchored reference frame.
在最近的一项研究中,Shinder 和 Taube(Shinder ME,Taube JS。121:4-37,2019)得出结论,大鼠前丘脑的头方向细胞被调谐到一维(1D,仅偏航)运动,与最近在蝙蝠、老鼠和大鼠中的发现相反。在这里,我们使用模型比较重新解释作者的实验结果,并证明与他们的结论相反,实验数据实际上支持双轴规则(Ison JJ,Jeffery KJ。119:192-208,2018)和倾斜方位模型(Laurens J,Angelaki DE。97:275-289,2018),其中头方向细胞利用重力整合关于头部所有主轴线的 3D 旋转信号。我们进一步表明,Shinder 和 Taube 的研究对于垂直定向调谐的存在没有定论;也就是说,头方向细胞是否在水平和垂直平面上共同编码 3D 方向。使用模型模拟,我们证明,即使存在 3D 调谐,Shinder 和 Taube 使用的实验方案和数据分析也不会揭示它。我们得出的结论是,Shinder 和 Taube 的实际实验数据与其他小组发现的头方向细胞的 3D 特性是兼容的,但由于分析不完整和定性,得出了错误的结论。我们对之前发表的数据进行了基于模型的分析,其中大鼠头方向细胞在三维运动期间被记录(Shinder ME,Taube JS。121:4-37,2019)。我们发现这些数据证实了之前的模型(“双轴规则”,Page HJI,Wilson JJ,Jeffery KJ。119:192-208,2018;和“倾斜方位模型”,Laurens J,Angelaki DE。97:275-289,2018),其中头方向细胞整合沿所有三个头部轴的旋转以在重力锚定的参考系中编码头部方向。