Suppr超能文献

使用基于序列和结构的方法在 CAGI5 盲测中预测突变引起的蛋白质稳定性变化。

Predicting changes in protein stability caused by mutation using sequence-and structure-based methods in a CAGI5 blind challenge.

机构信息

Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.

Donnelly Centre for Cellular and Biomolecular Research, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.

出版信息

Hum Mutat. 2019 Sep;40(9):1414-1423. doi: 10.1002/humu.23852. Epub 2019 Aug 7.

Abstract

Predicting the impact of mutations on proteins remains an important problem. As part of the CAGI5 frataxin challenge, we evaluate the accuracy with which Provean, FoldX, and ELASPIC can predict changes in the Gibbs free energy of a protein using a limited data set of eight mutations. We find that different methods have distinct strengths and limitations, with no method being strictly superior to other methods on all metrics. ELASPIC achieves the highest accuracy while also providing a web interface which simplifies the evaluation and analysis of mutations. FoldX is slightly less accurate than ELASPIC but is easier to run locally, as it does not depend on external tools or datasets. Provean achieves reasonable results while being computational less expensive than the other methods and not requiring a structure of the protein. In addition to methods submitted to the CAGI5 community experiment, and with the aim to inform about other methods with high accuracy, we also evaluate predictions made by Rosetta's ddg_monomer protocol, Rosetta's cartesian_ddg protocol, and thermodynamic integration calculations using Amber package. ELASPIC still achieves the highest accuracy, while Rosetta's catesian_ddg protocol appears to perform best in capturing the overall trend in the data.

摘要

预测突变对蛋白质的影响仍然是一个重要的问题。作为 CAGI5 弗里德赖希共济失调蛋白挑战的一部分,我们评估了 Provean、FoldX 和 ELASPIC 在使用有限的八个突变数据集预测蛋白质吉布斯自由能变化的准确性。我们发现不同的方法有不同的优缺点,没有一种方法在所有指标上都严格优于其他方法。ELASPIC 实现了最高的准确性,同时还提供了一个简化突变评估和分析的网络界面。FoldX 的准确性略低于 ELASPIC,但更容易在本地运行,因为它不依赖于外部工具或数据集。Provean 虽然计算成本低于其他方法,并且不需要蛋白质结构,但仍能获得合理的结果。除了提交给 CAGI5 社区实验的方法外,为了告知其他具有高精度的方法,我们还评估了 Rosetta 的 ddg_monomer 协议、Rosetta 的 cartesian_ddg 协议以及使用 Amber 包进行的热力学积分计算的预测。ELASPIC 仍然实现了最高的准确性,而 Rosetta 的 cartesian_ddg 协议似乎在捕捉数据的整体趋势方面表现最好。

相似文献

9
Assessing predictions of the impact of variants on splicing in CAGI5.评估 CAGI5 中变异对剪接影响的预测。
Hum Mutat. 2019 Sep;40(9):1215-1224. doi: 10.1002/humu.23869. Epub 2019 Aug 19.

引用本文的文献

4
VariBench, new variation benchmark categories and data sets.VariBench,新的变异基准类别和数据集。
Front Bioinform. 2023 Sep 19;3:1248732. doi: 10.3389/fbinf.2023.1248732. eCollection 2023.
5
Topological deep learning based deep mutational scanning.基于拓扑深度学习的深度突变扫描。
Comput Biol Med. 2023 Sep;164:107258. doi: 10.1016/j.compbiomed.2023.107258. Epub 2023 Jul 17.
6
Computational modeling and prediction of deletion mutants.计算建模与缺失突变体预测。
Structure. 2023 Jun 1;31(6):713-723.e3. doi: 10.1016/j.str.2023.04.005. Epub 2023 Apr 28.

本文引用的文献

4
FoldX as Protein Engineering Tool: Better Than Random Based Approaches?作为蛋白质工程工具的FoldX:比基于随机的方法更好吗?
Comput Struct Biotechnol J. 2018 Feb 3;16:25-33. doi: 10.1016/j.csbj.2018.01.002. eCollection 2018.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验