Suppr超能文献

基于自监督方法学习到的几何表示来预测突变诱导的蛋白质稳定性变化。

Prediction of mutation-induced protein stability changes based on the geometric representations learned by a self-supervised method.

机构信息

High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China.

National Engineering Center for New Vaccine Research, Beijing, China.

出版信息

BMC Bioinformatics. 2024 Aug 28;25(1):282. doi: 10.1186/s12859-024-05876-6.

Abstract

BACKGROUND

Thermostability is a fundamental property of proteins to maintain their biological functions. Predicting protein stability changes upon mutation is important for our understanding protein structure-function relationship, and is also of great interest in protein engineering and pharmaceutical design.

RESULTS

Here we present mutDDG-SSM, a deep learning-based framework that uses the geometric representations encoded in protein structure to predict the mutation-induced protein stability changes. mutDDG-SSM consists of two parts: a graph attention network-based protein structural feature extractor that is trained with a self-supervised learning scheme using large-scale high-resolution protein structures, and an eXtreme Gradient Boosting model-based stability change predictor with an advantage of alleviating overfitting problem. The performance of mutDDG-SSM was tested on several widely-used independent datasets. Then, myoglobin and p53 were used as case studies to illustrate the effectiveness of the model in predicting protein stability changes upon mutations. Our results show that mutDDG-SSM achieved high performance in estimating the effects of mutations on protein stability. In addition, mutDDG-SSM exhibited good unbiasedness, where the prediction accuracy on the inverse mutations is as well as that on the direct mutations.

CONCLUSION

Meaningful features can be extracted from our pre-trained model to build downstream tasks and our model may serve as a valuable tool for protein engineering and drug design.

摘要

背景

热稳定性是蛋白质维持其生物功能的基本特性。预测突变引起的蛋白质稳定性变化对于我们理解蛋白质结构-功能关系非常重要,在蛋白质工程和药物设计中也具有重要意义。

结果

在这里,我们提出了 mutDDG-SSM,这是一个基于深度学习的框架,它利用蛋白质结构中编码的几何表示来预测突变引起的蛋白质稳定性变化。mutDDG-SSM 由两部分组成:一个基于图注意力网络的蛋白质结构特征提取器,它使用大规模高分辨率蛋白质结构进行自我监督学习方案进行训练,以及一个基于极端梯度提升模型的稳定性变化预测器,具有缓解过拟合问题的优势。mutDDG-SSM 的性能在几个广泛使用的独立数据集上进行了测试。然后,肌红蛋白和 p53 被用作案例研究,以说明该模型在预测突变引起的蛋白质稳定性变化方面的有效性。我们的结果表明,mutDDG-SSM 在估计突变对蛋白质稳定性的影响方面表现出了很高的性能。此外,mutDDG-SSM 表现出很好的无偏性,即对逆突变的预测准确性与对直接突变的预测准确性一样好。

结论

可以从我们的预训练模型中提取有意义的特征来构建下游任务,我们的模型可以作为蛋白质工程和药物设计的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bfd/11360314/955300942374/12859_2024_5876_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验