Ramos Thelvia I, Villacis-Aguirre Carlos A, López-Aguilar Katherine V, Santiago Padilla Leandro, Altamirano Claudia, Toledo Jorge R, Santiago Vispo Nelson
Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile.
Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí 171103, Ecuador.
Pharmaceutics. 2022 Jan 21;14(2):247. doi: 10.3390/pharmaceutics14020247.
Nanomedicine plays an essential role in developing new therapies through novel drug delivery systems, diagnostic and imaging systems, vaccine development, antibacterial tools, and high-throughput screening. One of the most promising drug delivery systems are nanoparticles, which can be designed with various compositions, sizes, shapes, and surface modifications. These nanosystems have improved therapeutic profiles, increased bioavailability, and reduced the toxicity of the product they carry. However, the clinical translation of nanomedicines requires a thorough understanding of their properties to avoid problems with the most questioned aspect of nanosystems: safety. The particular physicochemical properties of nano-drugs lead to the need for additional safety, quality, and efficacy testing. Consequently, challenges arise during the physicochemical characterization, the production process, in vitro characterization, in vivo characterization, and the clinical stages of development of these biopharmaceuticals. The lack of a specific regulatory framework for nanoformulations has caused significant gaps in the requirements needed to be successful during their approval, especially with tests that demonstrate their safety and efficacy. Researchers face many difficulties in establishing evidence to extrapolate results from one level of development to another, for example, from an in vitro demonstration phase to an in vivo demonstration phase. Additional guidance is required to cover the particularities of this type of product, as some challenges in the regulatory framework do not allow for an accurate assessment of NPs with sufficient evidence of clinical success. This work aims to identify current regulatory issues during the implementation of nanoparticle assays and describe the major challenges that researchers have faced when exposing a new formulation. We further reflect on the current regulatory standards required for the approval of these biopharmaceuticals and the requirements demanded by the regulatory agencies. Our work will provide helpful information to improve the success of nanomedicines by compiling the challenges described in the literature that support the development of this novel encapsulation system. We propose a step-by-step approach through the different stages of the development of nanoformulations, from their design to the clinical stage, exemplifying the different challenges and the measures taken by the regulatory agencies to respond to these challenges.
纳米医学在通过新型药物递送系统、诊断和成像系统、疫苗开发、抗菌工具以及高通量筛选来开发新疗法方面发挥着至关重要的作用。最有前景的药物递送系统之一是纳米颗粒,其可以设计成具有各种组成、尺寸、形状和表面修饰。这些纳米系统具有改善的治疗特性、提高的生物利用度,并降低了它们所携带产品的毒性。然而,纳米药物的临床转化需要对其性质有透彻的了解,以避免纳米系统最受质疑的方面:安全性问题。纳米药物的特殊物理化学性质导致需要进行额外的安全性、质量和功效测试。因此,在这些生物制药的物理化学表征、生产过程、体外表征、体内表征以及临床开发阶段都会出现挑战。缺乏针对纳米制剂的特定监管框架导致在其批准过程中取得成功所需的要求存在重大差距,特别是在证明其安全性和功效的测试方面。研究人员在建立证据以将结果从一个开发水平外推到另一个开发水平时面临许多困难,例如,从体外证明阶段到体内证明阶段。需要额外的指导来涵盖这类产品的特殊性,因为监管框架中的一些挑战不允许在有足够临床成功证据的情况下对纳米颗粒进行准确评估。这项工作旨在确定纳米颗粒检测实施过程中当前的监管问题,并描述研究人员在推出新制剂时所面临的主要挑战。我们进一步思考这些生物制药批准所需的当前监管标准以及监管机构所要求的条件。我们的工作将通过汇编文献中描述的支持这种新型封装系统开发的挑战,提供有助于提高纳米药物成功率的有用信息。我们提出一种贯穿纳米制剂开发不同阶段的逐步方法,从其设计到临床阶段,举例说明不同的挑战以及监管机构为应对这些挑战所采取的措施。