Department of Chemistry and the Smalley-Curl Institute , Rice University , Houston , Texas 77005 , United States.
Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States.
ACS Nano. 2019 Jul 23;13(7):8222-8228. doi: 10.1021/acsnano.9b03488. Epub 2019 Jun 19.
Each structural form of single-wall carbon nanotube (SWCNT) has specific electronic and optical properties, but it has not been possible to achieve spatial or energetic modulation of those properties in controllable ways. We present here a simple method for using chemical reactions with single-stranded DNA (ssDNA) to accomplish such modulation. When aqueous suspensions of SWCNTs coated with ssDNA are exposed to singlet oxygen under ambient conditions, the nanotubes selectively form covalent bonds to the guanine nucleotides. This locally modulates semiconducting SWCNT energy levels and red-shifts their emission wavelengths by up to 10%. Both the magnitude and spatial pattern of these shifts can be controlled by selecting the nucleotide sequence used to coat the nanotubes. Biomedical, optoelectronic, and single-photon emission applications are foreseen.
单壁碳纳米管 (SWCNT) 的每种结构形式都具有特定的电子和光学性质,但迄今为止,还无法以可控的方式实现对这些性质的空间或能量调节。我们在此提出了一种使用与单链 DNA(ssDNA)进行化学反应的简单方法来实现这种调节。当用 ssDNA 涂覆的 SWCNT 的水性悬浮液在环境条件下暴露于单线态氧时,纳米管会选择性地与鸟嘌呤核苷酸形成共价键。这局部调节了半导体 SWCNT 的能级,并将其发射波长红移了多达 10%。通过选择用于涂覆纳米管的核苷酸序列,可以控制这些位移的幅度和空间模式。可以预见的应用包括生物医学、光电和单光子发射。