Wu Keliu, Chen Zhangxin, Li Jing, Xu Jinze, Wang Kun, Li Ran, Wang Shuhua, Dong Xiaohu
State Key Laboratory of Petroleum Resources and Prospecting , China University of Petroleum (Beijing) , Beijing 102249 , China.
Department of Chemical and Petroleum Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada.
Langmuir. 2019 Jul 2;35(26):8867-8873. doi: 10.1021/acs.langmuir.9b01179. Epub 2019 Jun 19.
The high permeability of nanoporous membranes is crucial for separation processes and energy conversions, especially for the world today that is facing growing water scarcity and energy demands. Unfortunately, further improving permeability, without sacrificing the required selectivity for specific applications, is still extremely challenging. Here, we shed light on the mechanisms of extremely high water permeability of artificial nanopores with the aquaporin-inspired pore geometry and propose a simple yet practical optimization strategy by using computational research to relate nanopore chemistry and geometry to permeability performance. We demonstrated that an ultrahigh water flow enhancement, up to 7 orders of magnitude, can be achieved by optimizing the combination of chemical and geometrical parameters of bioinspired artificial nanopores. Moreover, we addressed an existing debate over the water flow enhancement spanning over 10 to 10, attributed to the huge differences in chemical and geometrical properties. Our work provides a guideline to the design and optimization of nanofluidic devices with excellent performance.
纳米多孔膜的高渗透性对于分离过程和能量转换至关重要,特别是对于当今面临日益严重的水资源短缺和能源需求的世界而言。不幸的是,在不牺牲特定应用所需选择性的情况下进一步提高渗透性仍然极具挑战性。在此,我们通过受水通道蛋白启发的孔几何结构揭示了人工纳米孔极高水渗透性的机制,并通过计算研究提出了一种简单而实用的优化策略,以将纳米孔化学和几何结构与渗透性能相关联。我们证明,通过优化受生物启发的人工纳米孔的化学和几何参数组合,可以实现高达7个数量级的超高水流增强。此外,我们解决了关于水流增强幅度跨越10到10的现有争议,这归因于化学和几何性质的巨大差异。我们的工作为设计和优化具有优异性能的纳米流体装置提供了指导。