Suppr超能文献

学习过程中时变行为的高效推理。

Efficient inference for time-varying behavior during learning.

作者信息

Roy Nicholas A, Bak Ji Hyun, Akrami Athena, Brody Carlos D, Pillow Jonathan W

机构信息

Princeton Neuroscience Institute, Princeton University.

Korea Institute for Advanced Study.

出版信息

Adv Neural Inf Process Syst. 2018 Dec;31:5695-5705.

Abstract

The process of learning new behaviors over time is a problem of great interest in both neuroscience and artificial intelligence. However, most standard analyses of animal training data either treat behavior as fixed or track only coarse performance statistics (e.g., accuracy, bias), providing limited insight into the evolution of the policies governing behavior. To overcome these limitations, we propose a dynamic psychophysical model that efficiently tracks trial-to-trial changes in behavior over the course of training. Our model consists of a dynamic logistic regression model, parametrized by a set of time-varying weights that express dependence on sensory stimuli as well as task-irrelevant covariates, such as stimulus, choice, and answer history. Our implementation scales to large behavioral datasets, allowing us to infer 500K parameters (e.g., 10 weights over 50K trials) in minutes on a desktop computer. We optimize hyperparameters governing how rapidly each weight evolves over time using the decoupled Laplace approximation, an efficient method for maximizing marginal likelihood in non-conjugate models. To illustrate performance, we apply our method to psychophysical data from both rats and human subjects learning a delayed sensory discrimination task. The model successfully tracks the psychophysical weights of rats over the course of training, capturing day-to-day and trial-to-trial fluctuations that underlie changes in performance, choice bias, and dependencies on task history. Finally, we investigate why rats frequently make mistakes on easy trials, and suggest that apparent lapses can be explained by sub-optimal weighting of known task covariates.

摘要

随着时间的推移学习新行为的过程是神经科学和人工智能中一个备受关注的问题。然而,大多数对动物训练数据的标准分析要么将行为视为固定不变的,要么只跟踪粗略的性能统计数据(例如,准确性、偏差),这对支配行为的策略的演变提供的见解有限。为了克服这些局限性,我们提出了一种动态心理物理学模型,该模型能够在训练过程中有效地跟踪行为的逐次试验变化。我们的模型由一个动态逻辑回归模型组成,由一组随时间变化的权重参数化,这些权重表示对感觉刺激以及与任务无关的协变量(如刺激、选择和答案历史)的依赖。我们的实现能够扩展到大型行为数据集,使我们能够在台式计算机上几分钟内推断出50万个参数(例如,在5万次试验中有10个权重)。我们使用解耦拉普拉斯近似来优化控制每个权重随时间变化速度的超参数,这是一种在非共轭模型中最大化边际似然的有效方法。为了说明性能,我们将我们的方法应用于大鼠和人类受试者学习延迟感觉辨别任务的心理物理学数据。该模型在训练过程中成功地跟踪了大鼠的心理物理学权重,捕捉到了性能、选择偏差和对任务历史的依赖变化背后的每日和逐次试验波动。最后,我们研究了为什么大鼠在容易的试验中经常犯错,并表明明显失误可以用已知任务协变量的次优加权来解释。

相似文献

5
Sensory and Choice Responses in MT Distinct from Motion Encoding.感觉和选择反应在 MT 中与运动编码不同。
J Neurosci. 2023 Mar 22;43(12):2090-2103. doi: 10.1523/JNEUROSCI.0267-22.2023. Epub 2023 Feb 13.
10

引用本文的文献

1
Sensory choices as logistic classification.感觉选择作为逻辑分类。
Neuron. 2024 Sep 4;112(17):2854-2868.e1. doi: 10.1016/j.neuron.2024.06.016. Epub 2024 Jul 15.
2
Sensory choices as logistic classification.作为逻辑分类的感官选择
bioRxiv. 2024 Jun 27:2024.01.17.576029. doi: 10.1101/2024.01.17.576029.
6
Mixtures of strategies underlie rodent behavior during reversal learning.策略混合是啮齿动物在反转学习过程中行为的基础。
PLoS Comput Biol. 2023 Sep 14;19(9):e1011430. doi: 10.1371/journal.pcbi.1011430. eCollection 2023 Sep.
9
How learning unfolds in the brain: toward an optimization view.学习在大脑中是如何展开的:走向优化的观点。
Neuron. 2021 Dec 1;109(23):3720-3735. doi: 10.1016/j.neuron.2021.09.005. Epub 2021 Oct 13.

本文引用的文献

6
Adaptable history biases in human perceptual decisions.人类感知决策中的适应性历史偏差。
Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):E3548-57. doi: 10.1073/pnas.1518786113. Epub 2016 Jun 2.
10
How mechanisms of perceptual decision-making affect the psychometric function.知觉决策机制如何影响心理测量函数。
Prog Neurobiol. 2013 Apr;103:98-114. doi: 10.1016/j.pneurobio.2012.05.008. Epub 2012 May 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验