Suppr超能文献

小鼠在感知决策过程中会在不同策略之间交替。

Mice alternate between discrete strategies during perceptual decision-making.

作者信息

Ashwood Zoe C, Roy Nicholas A, Stone Iris R, Urai Anne E, Churchland Anne K, Pouget Alexandre, Pillow Jonathan W

机构信息

Deptartment of Computer Science, Princeton University, Princeton, NJ, USA.

Princeton Neuroscience Institute, Princeton, NJ, USA.

出版信息

Nat Neurosci. 2022 Feb;25(2):201-212. doi: 10.1038/s41593-021-01007-z. Epub 2022 Feb 7.

Abstract

Classical models of perceptual decision-making assume that subjects use a single, consistent strategy to form decisions, or that decision-making strategies evolve slowly over time. Here we present new analyses suggesting that this common view is incorrect. We analyzed data from mouse and human decision-making experiments and found that choice behavior relies on an interplay among multiple interleaved strategies. These strategies, characterized by states in a hidden Markov model, persist for tens to hundreds of trials before switching, and often switch multiple times within a session. The identified decision-making strategies were highly consistent across mice and comprised a single 'engaged' state, in which decisions relied heavily on the sensory stimulus, and several biased states in which errors frequently occurred. These results provide a powerful alternate explanation for 'lapses' often observed in rodent behavioral experiments, and suggest that standard measures of performance mask the presence of major changes in strategy across trials.

摘要

传统的感知决策模型假定,受试者采用单一、一致的策略来做出决策,或者决策策略会随着时间缓慢演变。在此,我们展示的新分析表明,这种普遍观点是错误的。我们分析了来自小鼠和人类决策实验的数据,发现选择行为依赖于多种交错策略之间的相互作用。这些策略以隐藏马尔可夫模型中的状态为特征,在切换之前会持续数十到数百次试验,并且在一个实验环节中常常会多次切换。所识别出的决策策略在小鼠之间高度一致,包括一个单一的“专注”状态,在此状态下决策严重依赖感觉刺激,以及几个偏差状态,在这些状态下错误频繁发生。这些结果为在啮齿动物行为实验中经常观察到的“失误”提供了一个有力的替代性解释,并表明标准的绩效衡量指标掩盖了跨试验中策略的重大变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c742/8890994/533f87f107c0/nihms-1778314-f0009.jpg

相似文献

引用本文的文献

1
Brain-wide representations of prior information in mouse decision-making.小鼠决策过程中先验信息的全脑表征。
Nature. 2025 Sep;645(8079):192-200. doi: 10.1038/s41586-025-09226-1. Epub 2025 Sep 3.
5
Decoding decision-making behavior from sparse neural spiking activity.从稀疏神经脉冲活动中解码决策行为。
PLoS Comput Biol. 2025 Aug 21;21(8):e1013335. doi: 10.1371/journal.pcbi.1013335. eCollection 2025 Aug.
9
Computational Urban Ecology of New York City Rats.纽约市老鼠的计算城市生态学
bioRxiv. 2025 Jul 24:2025.07.21.665423. doi: 10.1101/2025.07.21.665423.

本文引用的文献

4
Learning is shaped by abrupt changes in neural engagement.学习受到神经活动突然变化的影响。
Nat Neurosci. 2021 May;24(5):727-736. doi: 10.1038/s41593-021-00822-8. Epub 2021 Mar 29.
7
Extracting the dynamics of behavior in sensory decision-making experiments.从感觉决策实验中提取行为动力学。
Neuron. 2021 Feb 17;109(4):597-610.e6. doi: 10.1016/j.neuron.2020.12.004. Epub 2021 Jan 6.
8
Origin of perseveration in the trade-off between reward and complexity.在奖励和复杂性的权衡中坚持的起源。
Cognition. 2020 Nov;204:104394. doi: 10.1016/j.cognition.2020.104394. Epub 2020 Jul 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验