Suppr超能文献

基于机器学习,利用CT纹理特征鉴别胰腺浆液性囊腺瘤与黏液性囊腺瘤

Discrimination of Pancreatic Serous Cystadenomas From Mucinous Cystadenomas With CT Textural Features: Based on Machine Learning.

作者信息

Yang Jing, Guo Xinli, Ou Xuejin, Zhang Weiwei, Ma Xuelei

机构信息

State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Cancer Center, Sichuan University, Chengdu, China.

West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China.

出版信息

Front Oncol. 2019 Jun 12;9:494. doi: 10.3389/fonc.2019.00494. eCollection 2019.

Abstract

This study was designed to estimate the performance of textural features derived from contrast-enhanced CT in the differential diagnosis of pancreatic serous cystadenomas and pancreatic mucinous cystadenomas. Fifty-three patients with pancreatic serous cystadenoma and 25 patients with pancreatic mucinous cystadenoma were included. Textural parameters of the pancreatic neoplasms were extracted using the LIFEx software, and were analyzed using random forest and Least Absolute Shrinkage and Selection Operator (LASSO) methods. Patients were randomly divided into training and validation sets with a ratio of 4:1; random forest method was adopted to constructed a diagnostic prediction model. Scoring metrics included sensitivity, specificity, accuracy, and AUC. Radiomics features extracted from contrast-enhanced CT were able to discriminate pancreatic mucinous cystadenomas from serous cystadenomas in both the training group (slice thickness of 2 mm, AUC 0.77, sensitivity 0.95, specificity 0.83, accuracy 0.85; slice thickness of 5 mm, AUC 0.72, sensitivity 0.90, specificity 0.84, accuracy 0.86) and the validation group (slice thickness of 2 mm, AUC 0.66, sensitivity 0.86, specificity 0.71, accuracy 0.74; slice thickness of 5 mm, AUC 0.75, sensitivity 0.85, specificity 0.83, accuracy 0.83). In conclusion, our study provided preliminary evidence that textural features derived from CT images were useful in differential diagnosis of pancreatic mucinous cystadenomas and serous cystadenomas, which may provide a non-invasive approach to determine whether surgery is needed in clinical practice. However, multicentre studies with larger sample size are needed to confirm these results.

摘要

本研究旨在评估对比增强CT衍生的纹理特征在胰腺浆液性囊腺瘤和胰腺黏液性囊腺瘤鉴别诊断中的性能。纳入了53例胰腺浆液性囊腺瘤患者和25例胰腺黏液性囊腺瘤患者。使用LIFEx软件提取胰腺肿瘤的纹理参数,并采用随机森林和最小绝对收缩和选择算子(LASSO)方法进行分析。患者以4:1的比例随机分为训练集和验证集;采用随机森林方法构建诊断预测模型。评分指标包括敏感性、特异性、准确性和AUC。在训练组(层厚2 mm,AUC 0.77,敏感性0.95,特异性0.83,准确性0.85;层厚5 mm,AUC 0.72,敏感性0.90,特异性0.84,准确性0.86)和验证组(层厚2 mm,AUC 0.66,敏感性0.86,特异性0.71,准确性0.74;层厚5 mm,AUC 0.75,敏感性0.85,特异性0.83,准确性0.83)中,对比增强CT提取的影像组学特征均能够区分胰腺黏液性囊腺瘤和浆液性囊腺瘤。总之,我们的研究提供了初步证据,表明CT图像衍生的纹理特征在胰腺黏液性囊腺瘤和浆液性囊腺瘤的鉴别诊断中有用,这可能为临床实践中确定是否需要手术提供一种非侵入性方法。然而,需要更大样本量的多中心研究来证实这些结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a41/6581751/4feefe9821e1/fonc-09-00494-g0001.jpg

相似文献

10

引用本文的文献

1
Advancements in Radiomics-Based AI for Pancreatic Ductal Adenocarcinoma.
Bioengineering (Basel). 2025 Aug 6;12(8):849. doi: 10.3390/bioengineering12080849.
2
Application of Artificial Intelligence in Pancreatic Cyst Management: A Systematic Review.
Cancers (Basel). 2025 Aug 2;17(15):2558. doi: 10.3390/cancers17152558.
3
Evolving and Novel Applications of Artificial Intelligence in Cancer Imaging.
Cancers (Basel). 2025 Apr 30;17(9):1510. doi: 10.3390/cancers17091510.
5
Artificial Intelligence in Pancreatic Imaging: A Systematic Review.
United European Gastroenterol J. 2025 Feb;13(1):55-77. doi: 10.1002/ueg2.12723. Epub 2025 Jan 26.
6
Radiomics advances in the evaluation of pancreatic cystic neoplasms.
Heliyon. 2024 Jan 30;10(3):e25535. doi: 10.1016/j.heliyon.2024.e25535. eCollection 2024 Feb 15.
8
Serous Cystadenoma: A Review on Diagnosis and Management.
J Clin Med. 2023 Nov 25;12(23):7306. doi: 10.3390/jcm12237306.
9
Risk Assessment and Pancreatic Cancer: Diagnostic Management and Artificial Intelligence.
Cancers (Basel). 2023 Jan 5;15(2):351. doi: 10.3390/cancers15020351.
10
The Convergence of FTIR and EVs: Emergence Strategy for Non-Invasive Cancer Markers Discovery.
Diagnostics (Basel). 2022 Dec 21;13(1):22. doi: 10.3390/diagnostics13010022.

本文引用的文献

3
Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach.
Eur Radiol. 2018 Sep;28(9):3832-3839. doi: 10.1007/s00330-018-5368-4. Epub 2018 Apr 6.
4
Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions.
Eur J Nucl Med Mol Imaging. 2018 Sep;45(10):1649-1660. doi: 10.1007/s00259-018-3987-2. Epub 2018 Apr 6.
5
Diagnostic Performance of Mammographic Texture Analysis in the Differential Diagnosis of Benign and Malignant Breast Tumors.
Clin Breast Cancer. 2018 Aug;18(4):e621-e627. doi: 10.1016/j.clbc.2017.11.004. Epub 2017 Nov 9.
6
Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma.
Nat Mater. 2017 Nov;16(11):1155-1161. doi: 10.1038/nmat4997. Epub 2017 Oct 9.
7
CT Texture Analysis Potentially Predicts Local Failure in Head and Neck Squamous Cell Carcinoma Treated with Chemoradiotherapy.
AJNR Am J Neuroradiol. 2017 Dec;38(12):2334-2340. doi: 10.3174/ajnr.A5407. Epub 2017 Oct 12.
8
Endometrial Carcinoma: MR Imaging-based Texture Model for Preoperative Risk Stratification-A Preliminary Analysis.
Radiology. 2017 Sep;284(3):748-757. doi: 10.1148/radiol.2017161950. Epub 2017 May 10.
10
Pancreatic Cystic Neoplasms: An Update.
Gastroenterol Clin North Am. 2016 Mar;45(1):67-81. doi: 10.1016/j.gtc.2015.10.006. Epub 2016 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验