Suppr超能文献

FDG PET 和 CT 影像组学特征区分原发性和转移性肺病变的能力。

Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions.

机构信息

Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.

Radiotherapy and Radiosurgery, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy.

出版信息

Eur J Nucl Med Mol Imaging. 2018 Sep;45(10):1649-1660. doi: 10.1007/s00259-018-3987-2. Epub 2018 Apr 6.

Abstract

PURPOSE

To evaluate the ability of CT and PET radiomics features to classify lung lesions as primary or metastatic, and secondly to differentiate histological subtypes of primary lung cancers.

METHODS

A cohort of 534 patients with lung lesions were retrospectively studied. Radiomics texture features were extracted using the LIFEx package from semiautomatically segmented PET and CT images. Histology data were recorded in all patients. The patient cohort was divided into a training and a validation group and linear discriminant analysis (LDA) was performed to classify the lesions using both direct and backward stepwise methods. The robustness of the procedure was tested by repeating the entire process 100 times with different assignments to the training and validation groups. Scoring metrics included analysis of the receiver operating characteristic curves in terms of area under the curve (AUC), sensitivity, specificity and accuracy.

RESULTS

Radiomics features extracted from CT and PET datasets were able to differentiate primary tumours from metastases in both the training and the validation group (AUCs 0.79 ± 0.03 and 0.70 ± 0.04, respectively, from the CT dataset; AUCs 0.92 ± 0.01 and 0.91 ± 0.03, respectively, from the PET dataset). The AUC cut-off thresholds identified by LDA using direct and backward elimination strategies were -0.79 ± 0.06 and -0.81 ± 0.08, respectively (CT dataset) and -0.69 ± 0.05 and -0.68 ± 0.04, respectively (PET dataset). For differentiation between primary subgroups based on CT features, the AUCs in the training and validation groups were 0.81 ± 0.02 and 0.69 ± 0.04 for adenocarcinoma (Adc) vs. squamous cell carcinoma (Sqc) or "Other", 0.85 ± 0.02 and 0.70 ± 0.05 for Sqc vs. Adc or Other, and 0.77 ± 0.03 and 0.57 ± 0.05 for Other vs. Adc or Sqc. The same analyses for the PET data revealed AUCs of 0.90 ± 0.10 and 0.80 ± 0.04, 0.80 ± 0.02 and 0.61 ± 0.06, and 0.97 ± 0.01 and 0.88 ± 0.04, respectively.

CONCLUSION

PET radiomics features were able to differentiate between primary and metastatic lung lesions and showed the potential to identify primary lung cancer subtypes.

摘要

目的

评估 CT 和 PET 放射组学特征对肺病变进行分类(原发性或转移性)的能力,并区分原发性肺癌的组织学亚型。

方法

回顾性研究了 534 例肺病变患者。使用 LIFEx 软件包从半自动分割的 PET 和 CT 图像中提取放射组学纹理特征。在所有患者中记录组织学数据。将患者队列分为训练组和验证组,并使用直接和逐步向后方法进行线性判别分析(LDA)以对病变进行分类。通过 100 次不同的训练和验证组分配,重复整个过程来测试该程序的稳健性。评分指标包括基于曲线下面积(AUC)、敏感性、特异性和准确性的接收器操作特征曲线分析。

结果

从 CT 和 PET 数据集提取的放射组学特征能够在训练组和验证组中区分原发性肿瘤和转移瘤(来自 CT 数据集的 AUC 分别为 0.79±0.03 和 0.70±0.04,来自 PET 数据集的 AUC 分别为 0.92±0.01 和 0.91±0.03)。使用直接和逐步消除策略的 LDA 确定的 AUC 截断值分别为-0.79±0.06 和-0.81±0.08(CT 数据集)和-0.69±0.05 和-0.68±0.04(PET 数据集)。基于 CT 特征对原发性亚组进行区分,训练组和验证组的 AUC 分别为腺癌(Adc)与鳞状细胞癌(Sqc)或“其他”的 0.81±0.02 和 0.69±0.04,Sqc 与 Adc 或其他的 0.85±0.02 和 0.70±0.05,其他与 Adc 或 Sqc 的 0.77±0.03 和 0.57±0.05。对于 PET 数据的相同分析,AUC 分别为 0.90±0.10 和 0.80±0.04、0.80±0.02 和 0.61±0.06,以及 0.97±0.01 和 0.88±0.04。

结论

PET 放射组学特征能够区分原发性和转移性肺病变,并显示出识别原发性肺癌亚型的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验