Suppr超能文献

使用模型隐含工具变量(MIIVs)的潜在变量 GIMME。

Latent variable GIMME using model implied instrumental variables (MIIVs).

机构信息

Department of Psychology and Neuroscience.

出版信息

Psychol Methods. 2020 Apr;25(2):227-242. doi: 10.1037/met0000229. Epub 2019 Jun 27.

Abstract

Researchers across many domains of psychology increasingly wish to arrive at personalized and generalizable dynamic models of individuals' processes. This is seen in psychophysiological, behavioral, and emotional research paradigms, across a range of data types. Errors of measurement are inherent in most data. For this reason, researchers typically gather multiple indicators of the same latent construct and use methods, such as factor analysis, to arrive at scores from these indices. In addition to accurately measuring individuals, researchers also need to find the model that best describes the relations among the latent constructs. Most currently available data-driven searches do not include latent variables. We present an approach that builds from the strong foundations of group iterative multiple model estimation (GIMME), the idiographic filter, and model implied instrumental variables with two-stage least squares estimation (MIIV-2SLS) to provide researchers with the option to include latent variables in their data-driven model searches. The resulting approach is called latent variable GIMME (LV-GIMME). GIMME is utilized for the data-driven search for relations that exist among latent variables. Unlike other approaches such as the idiographic filter, LV-GIMME does not require that the latent variable model to be constant across individuals. This requirement is loosened by utilizing MIIV-2SLS for estimation. Simulated data studies demonstrate that the method can reliably detect relations among latent constructs, and that latent constructs provide more power to detect effects than using observed variables directly. We use empirical data examples drawn from functional MRI and daily self-report data. (PsycINFO Database Record (c) 2020 APA, all rights reserved).

摘要

越来越多的心理学领域的研究人员希望建立个性化和可推广的个体过程动态模型。这在心理生理学、行为和情绪研究范式中都有体现,涵盖了多种数据类型。大多数数据都存在测量误差。因此,研究人员通常会收集同一潜在构念的多个指标,并使用因子分析等方法从这些指标中得出分数。除了准确测量个体外,研究人员还需要找到最能描述潜在构念之间关系的模型。大多数现有的数据驱动搜索都不包括潜在变量。我们提出了一种方法,它建立在群体迭代多模型估计(GIMME)、个体化过滤器和使用两阶段最小二乘法估计(MIIV-2SLS)的模型隐含工具变量的坚实基础上,为研究人员提供了在其数据驱动模型搜索中包含潜在变量的选择。这种方法被称为潜在变量 GIMME(LV-GIMME)。GIMME 用于搜索潜在变量之间存在的关系。与个体化过滤器等其他方法不同,LV-GIMME 不需要潜在变量模型在个体之间保持不变。通过使用 MIIV-2SLS 进行估计,可以放宽这一要求。模拟数据研究表明,该方法可以可靠地检测潜在构念之间的关系,并且与直接使用观测变量相比,潜在构念提供了更多的检测效果的能力。我们使用来自功能磁共振成像和日常自我报告数据的实证数据示例。(PsycINFO 数据库记录(c)2020 APA,保留所有权利)。

相似文献

引用本文的文献

3
Clustering Individuals Based on Similarity in Idiographic Factor Loading Patterns.基于独特因素载荷模式的相似性对个体进行聚类。
Multivariate Behav Res. 2025 Jan-Feb;60(1):90-114. doi: 10.1080/00273171.2024.2374826. Epub 2024 Jul 23.
7
Blind Subgrouping of Task-based fMRI.基于任务的功能磁共振成像的盲分组
Psychometrika. 2023 Jun;88(2):434-455. doi: 10.1007/s11336-023-09907-8. Epub 2023 Mar 9.

本文引用的文献

1
A Limited Information Estimator for Dynamic Factor Models.动态因子模型的有限信息估计量。
Multivariate Behav Res. 2019 Mar-Apr;54(2):246-263. doi: 10.1080/00273171.2018.1519406. Epub 2019 Mar 4.
4
8
Network Mapping with GIMME.使用 GIMME 进行网络映射。
Multivariate Behav Res. 2017 Nov-Dec;52(6):789-804. doi: 10.1080/00273171.2017.1373014.
10
Test Reliability at the Individual Level.个体层面的测试可靠性。
Struct Equ Modeling. 2016;23(4):532-543. doi: 10.1080/10705511.2016.1148605. Epub 2016 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验