Arizmendi Cara J, Gates Kathleen M
The University of North Carolina Chapel Hill, Chapel Hill, NC, USA.
Multivariate Behav Res. 2025 Jan-Feb;60(1):90-114. doi: 10.1080/00273171.2024.2374826. Epub 2024 Jul 23.
Idiographic measurement models such as p-technique and dynamic factor analysis (DFA) assess latent constructs at the individual level. These person-specific methods may provide more accurate models than models obtained from aggregated data when individuals are heterogeneous in their processes. Developing clustering methods for the grouping of individuals with similar measurement models would enable researchers to identify if measurement model subtypes exist across individuals as well as assess if the different models correspond to the same latent concept or not. In this paper, methods for clustering individuals based on similarity in measurement model loadings obtained from time series data are proposed. We review literature on idiographic factor modeling and measurement invariance, as well as clustering for time series analysis. Through two studies, we explore the utility and effectiveness of these measures. In , a simulation study is conducted, demonstrating the recovery of groups generated to have differing factor loadings using the proposed clustering method. In , an extension of Study 1 to DFA is presented with a simulation study. Overall, we found good recovery of simulated clusters and provide an example demonstrating the method with empirical data.
诸如P技术和动态因子分析(DFA)等个性化测量模型在个体层面评估潜在结构。当个体在其过程中存在异质性时,这些针对个体的方法可能比从汇总数据获得的模型提供更准确的模型。开发用于对具有相似测量模型的个体进行分组的聚类方法,将使研究人员能够识别个体间是否存在测量模型亚型,以及评估不同模型是否对应于相同的潜在概念。本文提出了基于从时间序列数据获得的测量模型载荷相似性对个体进行聚类的方法。我们回顾了关于个性化因子建模和测量不变性以及时间序列分析聚类的文献。通过两项研究,我们探索了这些方法的实用性和有效性。在第一项研究中,进行了一项模拟研究,展示了使用所提出的聚类方法对生成的具有不同因子载荷的组的恢复情况。在第二项研究中,通过一项模拟研究展示了将第一项研究扩展到DFA的情况。总体而言,我们发现模拟聚类得到了很好的恢复,并提供了一个用实证数据演示该方法的示例。