Suppr超能文献

MIIVefa:一个使用模型隐含工具变量进行新型探索性因子分析的R包。

MIIVefa: An R Package for a New Type of Exploratory Factor Anaylysis Using Model-Implied Instrumental Variables.

作者信息

Luo Lan, Gates Kathleen M, Bollen Kenneth A

机构信息

Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Multivariate Behav Res. 2025 May-Jun;60(3):589-597. doi: 10.1080/00273171.2024.2436418. Epub 2024 Dec 27.

Abstract

We present the R package MIIVefa, designed to implement the MIIV-EFA algorithm. This algorithm explores and identifies the underlying factor structure within a set of variables. The resulting model is not a typical exploratory factor analysis (EFA) model because some loadings are fixed to zero and it allows users to include hypothesized correlated errors such as might occur with longitudinal data. As such, it resembles a confirmatory factor analysis (CFA) model. But, unlike CFA, the MIIV-EFA algorithm determines the number of factors and the items that load on these factors directly from the data. We provide both simulation and empirical examples to illustrate the application of MIIVefa and discuss its benefits and limitations.

摘要

我们展示了R包MIIVefa,其设计目的是实现MIIV-EFA算法。该算法探索并识别一组变量中的潜在因子结构。所得模型不是典型的探索性因子分析(EFA)模型,因为一些载荷被固定为零,并且它允许用户纳入假设的相关误差,比如纵向数据中可能出现的误差。因此,它类似于验证性因子分析(CFA)模型。但是,与CFA不同,MIIV-EFA算法直接从数据中确定因子数量以及加载在这些因子上的项目。我们提供了模拟和实证示例来说明MIIVefa的应用,并讨论其优点和局限性。

相似文献

本文引用的文献

2
When Good Loadings Go Bad: Robustness in Factor Analysis.当良好载荷变差时:因子分析中的稳健性
Struct Equ Modeling. 2020;27(4):515-524. doi: 10.1080/10705511.2019.1691005. Epub 2019 Nov 22.
3
Selecting scaling indicators in structural equation models (sems).选择结构方程模型(sems)中的标度指标。
Psychol Methods. 2024 Oct;29(5):868-889. doi: 10.1037/met0000530. Epub 2022 Oct 6.
8
The Scree Test For The Number Of Factors.因子数量的碎石检验
Multivariate Behav Res. 1966 Apr 1;1(2):245-76. doi: 10.1207/s15327906mbr0102_10.
9
Exploratory Factor Analysis With Small Sample Sizes.小样本量的探索性因素分析
Multivariate Behav Res. 2009 Mar-Apr;44(2):147-81. doi: 10.1080/00273170902794206.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验