Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
Department of Computer Science, Technical University of Munich, Munich, Germany.
Sci Rep. 2019 Jun 27;9(1):9317. doi: 10.1038/s41598-019-45586-1.
Geometrical structure of the myocardium plays an important role in understanding the generation of arrhythmias. In particular, a heterogeneous tissue (HT) channel defined in cardiovascular magnetic resonance (CMR) has been suggested to correlate with conduction channels defined in electroanatomic mapping in ventricular tachycardia (VT). Despite the potential of CMR for characterization of the arrhythmogenic substrate, there is currently no standard approach to identify potential conduction channels. Therefore, we sought to develop a workflow to identify HT channel based on the structural 3D modeling of the viable myocardium within areas of dense scar. We focus on macro-level HT channel detection in this work. The proposed technique was tested in high-resolution ex-vivo CMR images in 20 post-infarct swine models who underwent an electrophysiology study for VT inducibility. HT channel was detected in 15 animals with inducible VT, whereas it was only detected in 1 out of 5 animal with non-inducible VT (P < 0.01, Fisher's exact test). The HT channel detected in the non-inducible animal was shorter than those detected in animals with inducible VTs (inducible-VT animals: 35 ± 14 mm vs. non-inducible VT animal: 9.94 mm). Electrophysiology study and histopathological analyses validated the detected HT channels. The proposed technique may provide new insights for understanding the macro-level VT mechanism.
心肌的几何结构在理解心律失常的发生机制方面起着重要作用。特别是,心血管磁共振(CMR)中定义的不均匀组织(HT)通道已被认为与室性心动过速(VT)中的电解剖标测定义的传导通道相关。尽管 CMR 具有对心律失常基质进行特征描述的潜力,但目前尚无标准方法来识别潜在的传导通道。因此,我们寻求开发一种基于致密瘢痕区域内存活心肌的结构 3D 建模来识别 HT 通道的工作流程。我们专注于这项工作中的宏观 HT 通道检测。该方法在 20 个心肌梗死后猪模型的高分辨率离体 CMR 图像中进行了测试,这些猪模型接受了 VT 可诱导性的电生理研究。在 15 只可诱导 VT 的动物中检测到 HT 通道,而在 5 只不可诱导 VT 的动物中仅检测到 1 只(P<0.01,Fisher 确切检验)。在不可诱导 VT 的动物中检测到的 HT 通道比可诱导 VT 的动物中的 HT 通道短(可诱导 VT 动物:35±14mm vs. 不可诱导 VT 动物:9.94mm)。电生理研究和组织病理学分析验证了检测到的 HT 通道。该方法可能为理解宏观 VT 机制提供新的见解。