Moreau Céline, Tapin-Lingua Sandra, Grisel Sacha, Gimbert Isabelle, Le Gall Sophie, Meyer Valérie, Petit-Conil Michel, Berrin Jean-Guy, Cathala Bernard, Villares Ana
1UR1268 Biopolymères Interactions Assemblages, INRA, 44316 Nantes, France.
2InTechFibres Division, FCBA, Domaine Universitaire, CS 90252, 39044 Grenoble Cedex 9, France.
Biotechnol Biofuels. 2019 Jun 24;12:156. doi: 10.1186/s13068-019-1501-0. eCollection 2019.
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that cleave polysaccharides through an oxidative mechanism. These enzymes are major contributors to the recycling of carbon in nature and are currently used in the biorefinery industry. LPMOs are commonly used in synergy with cellulases to enhance biomass deconstruction. However, there are few examples of the use of monocomponent LPMOs as a tool for cellulose fibrillation. In this work, we took advantage of the LPMO action to facilitate disruption of wood cellulose fibers as a strategy to produce nanofibrillated cellulose (NFC).
The fungal LPMO from AA9 family (LPMO9E) was used in this study as it displays high specificity toward cellulose and its recombinant production in bioreactor is easily upscalable. The treatment of birchwood fibers with LPMO9E resulted in the release of a mixture of C1-oxidized oligosaccharides without any apparent modification in fiber morphology and dimensions. The subsequent mechanical shearing disintegrated the LPMO-pretreated samples yielding nanoscale cellulose elements. Their gel-like aspect and nanometric dimensions demonstrated that LPMOs disrupt the cellulose structure and facilitate the production of NFC.
This study demonstrates the potential use of LPMOs as a pretreatment in the NFC production process. LPMOs weaken fiber cohesion and facilitate fiber disruption while maintaining the crystallinity of cellulose.
裂解多糖单加氧酶(LPMOs)是一类依赖铜的酶,通过氧化机制裂解多糖。这些酶是自然界中碳循环的主要贡献者,目前已应用于生物精炼行业。LPMOs通常与纤维素酶协同使用,以增强生物质的解构。然而,将单组分LPMOs用作纤维素原纤化工具的例子很少。在本研究中,我们利用LPMO的作用来促进木质纤维素纤维的破坏,以此作为生产纳米纤化纤维素(NFC)的策略。
本研究使用了来自AA9家族的真菌LPMO(LPMO9E),因为它对纤维素具有高度特异性,并且在生物反应器中其重组生产易于扩大规模。用LPMO9E处理桦木纤维导致释放出C1氧化寡糖混合物,而纤维形态和尺寸没有任何明显变化。随后的机械剪切使LPMO预处理的样品分解,产生纳米级纤维素成分。它们的凝胶状外观和纳米尺寸表明,LPMOs破坏了纤维素结构并促进了NFC的生产。
本研究证明了LPMOs在NFC生产过程中作为预处理的潜在用途。LPMOs减弱了纤维凝聚力,促进了纤维破坏,同时保持了纤维素的结晶度。