Suppr超能文献

一种甲壳素多糖单加氧酶(CWR-1)在同种异体识别中的兼职功能。

A moonlighting function of a chitin polysaccharide monooxygenase, CWR-1, in allorecognition.

机构信息

Department of Chemistry, University of California, Berkeley, Berkeley, United States.

Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States.

出版信息

Elife. 2022 Aug 30;11:e80459. doi: 10.7554/eLife.80459.

Abstract

Organisms require the ability to differentiate themselves from organisms of different or even the same species. Allorecognition processes in filamentous fungi are essential to ensure identity of an interconnected syncytial colony to protect it from exploitation and disease. has three cell fusion checkpoints controlling formation of an interconnected mycelial network. The locus that controls the second checkpoint, which allows for cell wall dissolution and subsequent fusion between cells/hyphae, (cell wall remodeling) encodes two linked genes, and . Previously, it was shown that and show severe linkage disequilibrium with six different haplogroups present in populations. Isolates from an identical haplogroup show robust fusion, while somatic cell fusion between isolates of different haplogroups is significantly blocked in cell wall dissolution. The gene encodes a putative polysaccharide monooxygenase (PMO). Herein we confirm that CWR-1 is a C1-oxidizing chitin PMO. We show that the catalytic (PMO) domain of CWR-1 was sufficient for checkpoint function and cell fusion blockage; however, through analysis of active-site, histidine-brace mutants, the catalytic activity of CWR-1 was ruled out as a major factor for allorecognition. Swapping a portion of the PMO domain (V86 to T130) did not switch haplogroup specificity, but rather cells containing this chimera exhibited a novel haplogroup specificity. Allorecognition to mediate cell fusion blockage is likely occurring through a protein-protein interaction between CWR-1 with CWR-2. These data highlight a moonlighting role in allorecognition of the CWR-1 PMO domain.

摘要

生物需要有能力将自身与不同种甚至同种的其他生物区分开来。丝状真菌中的同种异体识别过程对于确保相互连接的合胞体菌落的身份至关重要,以防止其被利用和患病。 有三个细胞融合检查点控制相互连接的菌丝网络的形成。控制第二个检查点的基因座允许细胞壁溶解和随后的细胞/菌丝融合,(细胞壁重塑)编码两个连锁基因和。此前,已经表明和与 种群中存在的六个不同单倍型群体表现出严重的连锁不平衡。来自相同单倍型的分离株显示出强烈的融合,而不同单倍型的分离株之间的体细胞融合在细胞壁溶解中显著受阻。 基因编码一个假定的多糖单加氧酶(PMO)。本文证实 CWR-1 是一种 C1 氧化壳多糖 PMO。我们表明,CWR-1 的催化(PMO)结构域足以发挥检查点功能并阻止细胞融合;然而,通过对活性位点、组氨酸支链突变体的分析,CWR-1 的催化活性被排除为同种异体识别的主要因素。交换 PMO 结构域的一部分(V86 到 T130)并没有改变单倍型特异性,而是含有这种嵌合体的细胞表现出一种新的单倍型特异性。介导细胞融合阻断的同种异体识别可能是通过 CWR-1 与 CWR-2 之间的蛋白-蛋白相互作用发生的。这些数据突出了 CWR-1 PMO 结构域在同种异体识别中的兼职作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2817/9550227/0d3f51489c4d/elife-80459-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验