文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

RTNduals:一个用于共调控分析和双调控子推断的 R/Bioconductor 包。

RTNduals: an R/Bioconductor package for analysis of co-regulation and inference of dual regulons.

机构信息

Bioinformatics and Systems Biology Lab, Federal University of Paraná, Curitiba, Brazil.

Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund 221 85, Sweden.

出版信息

Bioinformatics. 2019 Dec 15;35(24):5357-5358. doi: 10.1093/bioinformatics/btz534.


DOI:10.1093/bioinformatics/btz534
PMID:31250887
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6954650/
Abstract

MOTIVATION: Transcription factors (TFs) are key regulators of gene expression, and can activate or repress multiple target genes, forming regulatory units, or regulons. Understanding downstream effects of these regulators includes evaluating how TFs cooperate or compete within regulatory networks. Here we present RTNduals, an R/Bioconductor package that implements a general method for analyzing pairs of regulons. RESULTS: RTNduals identifies a dual regulon when the number of targets shared between a pair of regulators is statistically significant. The package extends the RTN (Reconstruction of Transcriptional Networks) package, and uses RTN transcriptional networks to identify significant co-regulatory associations between regulons. The Supplementary Information reports two case studies for TFs using the METABRIC and TCGA breast cancer cohorts. AVAILABILITY AND IMPLEMENTATION: RTNduals is written in the R language, and is available from the Bioconductor project at http://bioconductor.org/packages/RTNduals/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

动机:转录因子(TFs)是基因表达的关键调节剂,它们可以激活或抑制多个靶基因,形成调控单元或调控群。理解这些调节剂的下游效应包括评估 TF 在调控网络中如何合作或竞争。在这里,我们提出了 RTNduals,这是一个 R/Bioconductor 包,它实现了一种分析双调控群的通用方法。

结果:当一对调节剂之间共享的靶标数量具有统计学意义时,RTNduals 会识别出一个双调控群。该软件包扩展了 RTN(转录网络重建)软件包,并使用 RTN 转录网络来识别调控群之间显著的共调控关联。补充信息报告了使用 METABRIC 和 TCGA 乳腺癌队列的两个 TF 案例研究。

可用性和实现:RTNduals 是用 R 语言编写的,并可从 http://bioconductor.org/packages/RTNduals/ 上的 Bioconductor 项目获得。

补充信息:补充数据可在 Bioinformatics 在线获得。

相似文献

[1]
RTNduals: an R/Bioconductor package for analysis of co-regulation and inference of dual regulons.

Bioinformatics. 2019-12-15

[2]
RTNsurvival: an R/Bioconductor package for regulatory network survival analysis.

Bioinformatics. 2019-11-1

[3]
ELMER v.2: an R/Bioconductor package to reconstruct gene regulatory networks from DNA methylation and transcriptome profiles.

Bioinformatics. 2019-6-1

[4]
CeTF: an R/Bioconductor package for transcription factor co-expression networks using regulatory impact factors (RIF) and partial correlation and information (PCIT) analysis.

BMC Genomics. 2021-8-20

[5]
TreeAndLeaf: an R/Bioconductor package for graphs and trees with focus on the leaves.

Bioinformatics. 2022-2-7

[6]
monaLisa: an R/Bioconductor package for identifying regulatory motifs.

Bioinformatics. 2022-4-28

[7]
CoRegNet: reconstruction and integrated analysis of co-regulatory networks.

Bioinformatics. 2015-9-15

[8]
Transcriptogramer: an R/Bioconductor package for transcriptional analysis based on protein-protein interaction.

Bioinformatics. 2019-8-15

[9]
MR4Cancer: a web server prioritizing master regulators for cancer.

Bioinformatics. 2019-2-15

[10]
runibic: a Bioconductor package for parallel row-based biclustering of gene expression data.

Bioinformatics. 2018-12-15

引用本文的文献

[1]
Gene regulatory networks analysis for the discovery of prognostic genes in gliomas.

Sci Rep. 2025-4-23

[2]
NetREm: Network Regression Embeddings reveal cell-type transcription factor coordination for gene regulation.

Bioinform Adv. 2024-12-20

[3]
Machine learning identification of a novel vasculogenic mimicry-related signature and FOXM1's role in promoting vasculogenic mimicry in clear cell renal cell carcinoma.

Transl Oncol. 2025-3

[4]
Improving molecular subtypes and prognosis of pancreatic cancer through multi group analysis and machine learning.

Discov Oncol. 2025-1-28

[5]
Multi omics analysis of mitophagy subtypes and integration of machine learning for predicting immunotherapy responses in head and neck squamous cell carcinoma.

Aging (Albany NY). 2024-6-21

[6]
Multiomics Analysis of Disulfidptosis Patterns and Integrated Machine Learning to Predict Immunotherapy Response in Lung Adenocarcinoma.

Curr Med Chem. 2024

[7]
Transcriptional Profile of Human Pancreatic Acinar Ductal Metaplasia.

Gastro Hep Adv. 2023

[8]
spongEffects: ceRNA modules offer patient-specific insights into the miRNA regulatory landscape.

Bioinformatics. 2023-5-4

[9]
Comprehensive Characterization of the Regulatory Landscape of Adrenocortical Carcinoma: Novel Transcription Factors and Targets Associated with Prognosis.

Cancers (Basel). 2022-10-27

[10]
A transcriptional network of cell cycle dysregulation in noninvasive papillary urothelial carcinoma.

Sci Rep. 2022-10-3

本文引用的文献

[1]
Recruitment of the protein phosphatase-1 catalytic subunit to promoters by the dual-function transcription factor RFX1.

Biochem Biophys Res Commun. 2019-1-14

[2]
Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer.

Cell. 2017-10-19

[3]
Down-regulation of Forkhead box protein A1 (FOXA1) leads to cancer stem cell-like properties in tamoxifen-resistant breast cancer cells through induction of interleukin-6.

J Biol Chem. 2017-5-19

[4]
Regulators of genetic risk of breast cancer identified by integrative network analysis.

Nat Genet. 2016-1

[5]
Comprehensive molecular portraits of human breast tumours.

Nature. 2012-9-23

[6]
The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.

Nature. 2012-4-18

[7]
ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context.

BMC Bioinformatics. 2006-3-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索