Department of Electrical and Information Technology, Lund University, Lund 221 00, Sweden.
Sci Adv. 2023 Feb 3;9(5):eade7098. doi: 10.1126/sciadv.ade7098.
Ultra-scaled ferroelectrics are desirable for high-density nonvolatile memories and neuromorphic computing; however, for advanced applications, single domain dynamics and defect behavior need to be understood at scaled geometries. Here, we demonstrate the integration of a ferroelectric gate stack on a heterostructure tunnel field-effect transistor (TFET) with subthermionic operation. On the basis of the ultrashort effective channel created by the band-to-band tunneling process, the localized potential variations induced by single domains and individual defects are sensed without physical gate-length scaling required for conventional transistors. We electrically measure abrupt threshold voltage shifts and quantify the appearance of new individual defects activated by the ferroelectric switching. Our results show that ferroelectric films can be integrated on heterostructure devices and indicate that the intrinsic electrostatic control within ferroelectric TFETs provides the opportunity for ultrasensitive scale-free detection of single domains and defects in ultra-scaled ferroelectrics. Our approach opens a previously unidentified path for investigating the ultimate scaling limits of ferroelectronics.
超大规模铁电体对于高密度非易失性存储器和神经形态计算是理想的;然而,对于先进的应用,需要在缩小的几何形状下理解单畴动力学和缺陷行为。在这里,我们展示了在具有亚热离子操作的异质结构隧道场效应晶体管 (TFET) 上集成铁电栅堆叠。基于带带隧穿过程产生的超短有效沟道,无需传统晶体管所需的物理栅长缩小,即可感测单畴和单个缺陷引起的局部电位变化。我们通过电测量突然的阈值电压变化,并量化由铁电开关激活的新单个缺陷的出现。我们的结果表明,铁电薄膜可以集成在异质结构器件上,并且表明铁电 TFET 中的固有静电控制为在超大规模铁电体中进行超灵敏的无尺寸限制的单畴和缺陷检测提供了机会。我们的方法为研究铁电电子学的极限缩小开辟了一条以前未被识别的途径。