Suppr超能文献

在合成代谢组中编码信息。

Encoding information in synthetic metabolomes.

机构信息

School of Engineering, Brown University, Providence, RI, United States of America.

Department of Chemistry, Brown University, Providence, RI, United States of America.

出版信息

PLoS One. 2019 Jul 3;14(7):e0217364. doi: 10.1371/journal.pone.0217364. eCollection 2019.

Abstract

Biomolecular information systems offer exciting potential advantages and opportunities to complement conventional semiconductor technologies. Much attention has been paid to information-encoding polymers, but small molecules also play important roles in biochemical information systems. Downstream from DNA, the metabolome is an information-rich molecular system with diverse chemical dimensions which could be harnessed for information storage and processing. As a proof of principle of small-molecule postgenomic data storage, here we demonstrate a workflow for representing abstract data in synthetic mixtures of metabolites. Our approach leverages robotic liquid handling for writing digital information into chemical mixtures, and mass spectrometry for extracting the data. We present several kilobyte-scale image datasets stored in synthetic metabolomes, which can be decoded with accuracy exceeding 99% using multi-mass logistic regression. Cumulatively, >100,000 bits of digital image data was written into metabolomes. These early demonstrations provide insight into some of the benefits and limitations of small-molecule chemical information systems.

摘要

生物分子信息系统为补充传统半导体技术提供了令人兴奋的潜在优势和机会。人们对信息编码聚合物给予了极大的关注,但小分子在生化信息系统中也起着重要的作用。在 DNA 下游,代谢组是一个信息丰富的分子系统,具有多种化学维度,可以用于信息存储和处理。作为小分子后基因组数据存储原理的证明,我们在这里展示了一种在代谢物合成混合物中表示抽象数据的工作流程。我们的方法利用机器人液体处理将数字信息写入化学混合物,并利用质谱法提取数据。我们展示了几个千字节规模的图像数据集,这些数据集可以使用多质量逻辑回归以超过 99%的准确率进行解码。累计写入代谢组的数字图像数据超过 100000 位。这些早期的演示提供了对小分子化学信息系统的一些优势和限制的洞察。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验