Brown University, Providence, RI, USA.
University of Minnesota, Minneapolis, MN, USA.
Nat Commun. 2023 Jan 30;14(1):496. doi: 10.1038/s41467-023-36206-8.
Acid-base reactions are ubiquitous, easy to prepare, and execute without sophisticated equipment. Acids and bases are also inherently complementary and naturally map to a universal representation of "0" and "1." Here, we propose how to leverage acids, bases, and their reactions to encode binary information and perform information processing based upon the majority and negation operations. These operations form a functionally complete set that we use to implement more complex computations such as digital circuits and neural networks. We present the building blocks needed to build complete digital circuits using acids and bases for dual-rail encoding data values as complementary pairs, including a set of primitive logic functions that are widely applicable to molecular computation. We demonstrate how to implement neural network classifiers and some classes of digital circuits with acid-base reactions orchestrated by a robotic fluid handling device. We validate the neural network experimentally on a number of images with different formats, resulting in a perfect match to the in-silico classifier. Additionally, the simulation of our acid-base classifier matches the results of the in-silico classifier with approximately 99% similarity.
酸碱反应无处不在,易于制备,无需复杂的设备即可进行。酸和碱也是互补的,并且天然地映射到“0”和“1”的通用表示形式。在这里,我们提出了如何利用酸、碱及其反应来对二进制信息进行编码,并基于多数和否定操作执行信息处理。这些操作形成了一个功能完备的集合,我们可以使用该集合来实现更复杂的计算,例如数字电路和神经网络。我们提出了使用酸和碱构建完整数字电路所需的构建块,用于将数据值作为互补对进行双轨编码,包括一组广泛适用于分子计算的基本逻辑函数。我们展示了如何使用酸-碱反应来实现神经网络分类器和某些类别的数字电路,这些反应由机器人流体处理设备进行协调。我们使用不同格式的图像对神经网络进行了实验验证,结果与计算机分类器完全匹配。此外,我们的酸-碱分类器的模拟与计算机分类器的结果具有约 99%的相似度。