Suppr超能文献

一种用于微观结构优化和材料设计的预测性机器学习方法。

A predictive machine learning approach for microstructure optimization and materials design.

作者信息

Liu Ruoqian, Kumar Abhishek, Chen Zhengzhang, Agrawal Ankit, Sundararaghavan Veera, Choudhary Alok

机构信息

EECS Department, Northwestern University, Evanston IL, USA.

Oak Ridge National Lab, Oak Ridge TN, USA.

出版信息

Sci Rep. 2015 Jun 23;5:11551. doi: 10.1038/srep11551.

Abstract

This paper addresses an important materials engineering question: How can one identify the complete space (or as much of it as possible) of microstructures that are theoretically predicted to yield the desired combination of properties demanded by a selected application? We present a problem involving design of magnetoelastic Fe-Ga alloy microstructure for enhanced elastic, plastic and magnetostrictive properties. While theoretical models for computing properties given the microstructure are known for this alloy, inversion of these relationships to obtain microstructures that lead to desired properties is challenging, primarily due to the high dimensionality of microstructure space, multi-objective design requirement and non-uniqueness of solutions. These challenges render traditional search-based optimization methods incompetent in terms of both searching efficiency and result optimality. In this paper, a route to address these challenges using a machine learning methodology is proposed. A systematic framework consisting of random data generation, feature selection and classification algorithms is developed. Experiments with five design problems that involve identification of microstructures that satisfy both linear and nonlinear property constraints show that our framework outperforms traditional optimization methods with the average running time reduced by as much as 80% and with optimality that would not be achieved otherwise.

摘要

本文探讨了一个重要的材料工程问题

如何识别理论上预测会产生选定应用所需性能组合的微观结构的完整空间(或尽可能多的空间)?我们提出了一个涉及设计具有增强弹性、塑性和磁致伸缩性能的磁弹性铁镓合金微观结构的问题。虽然已知该合金在给定微观结构的情况下计算性能的理论模型,但将这些关系反转以获得导致所需性能的微观结构具有挑战性,主要是由于微观结构空间的高维度、多目标设计要求和解决方案的非唯一性。这些挑战使得传统的基于搜索的优化方法在搜索效率和结果最优性方面都无能为力。本文提出了一种使用机器学习方法应对这些挑战的途径。开发了一个由随机数据生成、特征选择和分类算法组成的系统框架。对五个涉及识别满足线性和非线性性能约束的微观结构的设计问题进行的实验表明,我们的框架优于传统优化方法,平均运行时间减少了多达80%,并且具有传统方法无法实现的最优性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验