Suppr超能文献

肢体和鳍再生的深层进化起源。

Deep evolutionary origin of limb and fin regeneration.

机构信息

Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil.

Department of Integrative Biology, Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824.

出版信息

Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15106-15115. doi: 10.1073/pnas.1900475116. Epub 2019 Jul 3.

Abstract

Salamanders and lungfishes are the only sarcopterygians (lobe-finned vertebrates) capable of paired appendage regeneration, regardless of the amputation level. Among actinopterygians (ray-finned fishes), regeneration after amputation at the fin endoskeleton has only been demonstrated in polypterid fishes (Cladistia). Whether this ability evolved independently in sarcopterygians and actinopterygians or has a common origin remains unknown. Here we combine fin regeneration assays and comparative RNA-sequencing (RNA-seq) analysis of and axolotl blastemas to provide support for a common origin of paired appendage regeneration in Osteichthyes (bony vertebrates). We show that, in addition to polypterids, regeneration after fin endoskeleton amputation occurs in extant representatives of 2 other nonteleost actinopterygians: the American paddlefish (Chondrostei) and the spotted gar (Holostei). Furthermore, we assessed regeneration in 4 teleost species and show that, with the exception of the blue gourami (Anabantidae), 3 species were capable of regenerating fins after endoskeleton amputation: the white convict and the oscar (Cichlidae), and the goldfish (Cyprinidae). Our comparative RNA-seq analysis of regenerating blastemas of axolotl and reveals the activation of common genetic pathways and expression profiles, consistent with a shared genetic program of appendage regeneration. Comparison of RNA-seq data from early blastema to single-cell RNA-seq data from axolotl limb bud and limb regeneration stages shows that and axolotl share a regeneration-specific genetic program. Collectively, our findings support a deep evolutionary origin of paired appendage regeneration in Osteichthyes and provide an evolutionary framework for studies on the genetic basis of appendage regeneration.

摘要

蝾螈和肺鱼是唯一能够进行成对附肢再生的肉鳍鱼(肉鳍鱼类),无论截肢水平如何。在辐鳍鱼(硬骨鱼类)中,只有在鳍内骨骼截肢后才在多鳍鱼(硬骨鱼总目)中证明了再生能力。这种能力是否在肉鳍鱼和辐鳍鱼中独立进化而来,或者是否具有共同的起源,仍然未知。在这里,我们结合鳍再生测定和比较 RNA 测序(RNA-seq)分析,提供了硬骨鱼类(有颌脊椎动物)成对附肢再生具有共同起源的证据。我们表明,除了多鳍鱼外,在现存的 2 种非硬骨总目辐鳍鱼中,即美洲匙吻鲟(软骨硬鳞鱼)和斑点叉尾鮰(全骨鱼),也会发生鳍内骨骼截肢后的再生。此外,我们评估了 4 种硬骨鱼类的再生能力,除了蓝丝绒倒吊(攀鲈科)外,有 3 种鱼类在截肢后能够再生鳍:白子和大铅笔(慈鲷科),以及金鱼(鲤科)。我们对蝾螈和美洲匙吻鲟再生的芽基进行比较 RNA-seq 分析,揭示了共同遗传途径和表达谱的激活,这与附肢再生的共享遗传程序一致。将早期芽基的 RNA-seq 数据与蝾螈肢芽和肢再生阶段的单细胞 RNA-seq 数据进行比较表明,蝾螈和美洲匙吻鲟共享一个特定于再生的遗传程序。总的来说,我们的研究结果支持硬骨鱼类中成对附肢再生具有深远的进化起源,并为研究附肢再生的遗传基础提供了一个进化框架。

相似文献

1
Deep evolutionary origin of limb and fin regeneration.
Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15106-15115. doi: 10.1073/pnas.1900475116. Epub 2019 Jul 3.
2
Tetrapod limb and sarcopterygian fin regeneration share a core genetic programme.
Nat Commun. 2016 Nov 2;7:13364. doi: 10.1038/ncomms13364.
3
Full regeneration of the tribasal Polypterus fin.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3838-43. doi: 10.1073/pnas.1006619109. Epub 2012 Feb 21.
6
Bichirs employ similar genetic pathways for limb regeneration as are used in lungfish and salamanders.
Gene. 2019 Mar 30;690:68-74. doi: 10.1016/j.gene.2018.12.031. Epub 2018 Dec 21.
7
Suppressors of cGAS-STING are downregulated during fin-limb regeneration and aging in aquatic vertebrates.
J Exp Zool B Mol Dev Evol. 2024 May;342(3):241-251. doi: 10.1002/jez.b.23227. Epub 2023 Oct 25.
9
A Conserved MicroRNA Regulatory Circuit Is Differentially Controlled during Limb/Appendage Regeneration.
PLoS One. 2016 Jun 29;11(6):e0157106. doi: 10.1371/journal.pone.0157106. eCollection 2016.
10
Microarray analysis of microRNA expression during axolotl limb regeneration.
PLoS One. 2012;7(9):e41804. doi: 10.1371/journal.pone.0041804. Epub 2012 Sep 13.

引用本文的文献

1
From fragment to form: whole-body regeneration in a model urochordate.
NPJ Regen Med. 2025 Aug 1;10(1):36. doi: 10.1038/s41536-025-00423-0.
4
Key Proteins for Regeneration in : Transcriptomic Insights From Aged and Juvenile Limbs.
Scientifica (Cairo). 2024 Nov 14;2024:5460694. doi: 10.1155/2024/5460694. eCollection 2024.
5
Regeneration of the caudal fin of the evolutionary ancient tropical gar Atractosteus tropicus.
BMC Zool. 2024 Oct 10;9(1):26. doi: 10.1186/s40850-024-00214-y.
6
Characterization of regeneration initiating cells during Xenopus laevis tail regeneration.
Genome Biol. 2024 Oct 1;25(1):251. doi: 10.1186/s13059-024-03396-3.
7
Genetic regulation of injury-induced heterotopic ossification in adult zebrafish.
Dis Model Mech. 2024 May 1;17(5). doi: 10.1242/dmm.050724. Epub 2024 May 31.
8
Understanding interleukin 11 as a disease gene and therapeutic target.
Biochem J. 2023 Dec 13;480(23):1987-2008. doi: 10.1042/BCJ20220160.
9
Suppressors of cGAS-STING are downregulated during fin-limb regeneration and aging in aquatic vertebrates.
J Exp Zool B Mol Dev Evol. 2024 May;342(3):241-251. doi: 10.1002/jez.b.23227. Epub 2023 Oct 25.
10
The known, unknown, and unknown unknowns of cell-cell communication in planarian regeneration.
Zool Res. 2023 Sep 18;44(5):981-992. doi: 10.24272/j.issn.2095-8137.2023.044.

本文引用的文献

1
Blastemal progenitors modulate immune signaling during early limb regeneration.
Development. 2019 Jan 2;146(1):dev169128. doi: 10.1242/dev.169128.
2
Bichirs employ similar genetic pathways for limb regeneration as are used in lungfish and salamanders.
Gene. 2019 Mar 30;690:68-74. doi: 10.1016/j.gene.2018.12.031. Epub 2018 Dec 21.
3
Amputation-induced reactive oxygen species signaling is required for axolotl tail regeneration.
Dev Dyn. 2019 Feb;248(2):189-196. doi: 10.1002/dvdy.5. Epub 2018 Dec 21.
4
Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration.
Science. 2018 Oct 26;362(6413). doi: 10.1126/science.aaq0681. Epub 2018 Sep 27.
6
Melanocortin Receptor 4 Signaling Regulates Vertebrate Limb Regeneration.
Dev Cell. 2018 Aug 20;46(4):397-409.e5. doi: 10.1016/j.devcel.2018.07.021.
7
Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data.
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6249-6254. doi: 10.1073/pnas.1719358115. Epub 2018 May 14.
8
The Reactome Pathway Knowledgebase.
Nucleic Acids Res. 2018 Jan 4;46(D1):D649-D655. doi: 10.1093/nar/gkx1132.
9
Reactome enhanced pathway visualization.
Bioinformatics. 2017 Nov 1;33(21):3461-3467. doi: 10.1093/bioinformatics/btx441.
10
Fins into limbs: Recent insights from sarcopterygian fish.
Genesis. 2018 Jan;56(1). doi: 10.1002/dvg.23052. Epub 2017 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验