Suppr超能文献

在敲低研究中估算转录因子活性。

Estimation of Transcription Factor Activity in Knockdown Studies.

机构信息

Knowledge Management in Bioinformatics, Computer Science Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.

出版信息

Sci Rep. 2019 Jul 3;9(1):9593. doi: 10.1038/s41598-019-46053-7.

Abstract

Numerous methods have been developed trying to infer actual regulatory events in a sample. A prominent class of methods model genome-wide gene expression as linear equations derived from a transcription factor (TF) - gene network and optimizes parameters to fit the measured expression intensities. We apply four such methods on experiments with a TF-knockdown (KD) in human and E. coli. The transcriptome data provides clear expression signals and thus represents an extremely favorable test setting. The methods estimate activity changes of all TFs, which we expect to be highest in the KD TF. However, only in 15 out of 54 cases, the KD TFs ranked in the top 5%. We show that this poor overall performance cannot be attributed to a low effectiveness of the knockdown or the specific regulatory network provided as background knowledge. Further, the ranks of regulators related to the KD TF by the network or pathway are not significantly different from a random selection. In general, the result overlaps of different methods are small, indicating that they draw very different conclusions when presented with the same, presumably simple, inference problem. These results show that the investigated methods cannot yield robust TF activity estimates in knockdown schemes.

摘要

已经开发出了许多方法来尝试推断样本中的实际调控事件。一类突出的方法是将全基因组基因表达模型化为来自转录因子 (TF) - 基因网络的线性方程,并优化参数以拟合测量的表达强度。我们在人类和大肠杆菌的 TF 敲低 (KD) 实验中应用了四种这样的方法。转录组数据提供了明确的表达信号,因此代表了一个极其有利的测试环境。这些方法估计了所有 TF 的活性变化,我们预计 KD TF 的活性变化最高。然而,在 54 个案例中,只有 15 个 KD TF 排名在前 5%。我们表明,这种整体性能不佳不能归因于敲低的低效率或作为背景知识提供的特定调控网络。此外,网络或途径与 KD TF 相关的调节剂的排名与随机选择没有显著差异。一般来说,不同方法的结果重叠很小,这表明当面对相同的、推测简单的推断问题时,它们得出了非常不同的结论。这些结果表明,在所研究的敲低方案中,这些方法无法产生稳健的 TF 活性估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e19/6610105/32db2130e8ca/41598_2019_46053_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验