Suppr超能文献

昼夜节律和进食节律对小鼠肝脏中节律性mRNA转录和翻译的影响不同。

Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver.

作者信息

Atger Florian, Gobet Cédric, Marquis Julien, Martin Eva, Wang Jingkui, Weger Benjamin, Lefebvre Grégory, Descombes Patrick, Naef Felix, Gachon Frédéric

机构信息

Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland;

Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland;

出版信息

Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6579-88. doi: 10.1073/pnas.1515308112. Epub 2015 Nov 9.

Abstract

Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light-dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5'-Terminal Oligo Pyrimidine tract (5'-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5'-UTR (TISU) motif. The increased translation efficiency of 5'-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation.

摘要

基因表达的昼夜振荡是大多数生物节律生理学的一个标志。这种振荡受生物钟和进食节律之间相互作用的控制。尽管节律性mRNA积累已得到广泛研究,但对其转录和翻译的了解相对较少。在这里,我们在生理明暗条件下以及野生型和脑与肌肉芳香烃受体核转运蛋白样蛋白1(Bmal1)缺陷动物自由进食或夜间限制进食的情况下,同时对小鼠肝脏mRNA的时间转录、积累和翻译进行了定量分析。我们发现,对于大多数基因而言,节律性转录主要驱动节律性mRNA积累和翻译。野生型和Bmal1基因敲除小鼠的比较表明,生物钟和进食节律对节律性基因表达有广泛影响,Bmal1缺失对转录水平和转录后水平均有惊人影响。对于具有5'-末端寡嘧啶序列(5'-TOP)的基因以及参与线粒体活性的基因(其中许多含有短5'-非翻译区翻译起始子(TISU)基序),翻译效率在昼夜周期中受到不同调节。5'-TOP和TISU基因翻译效率的提高主要由进食节律驱动,但Bmal1缺失也会影响翻译的幅度和相位,包括TISU基因。这项研究共同强调了昼夜节律和进食节律在多个步骤之间的复杂相互联系,这些步骤最终决定了节律性基因表达和翻译。

相似文献

1
Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver.
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6579-88. doi: 10.1073/pnas.1515308112. Epub 2015 Nov 9.
3
Transcriptional regulatory logic of the diurnal cycle in the mouse liver.
PLoS Biol. 2017 Apr 17;15(4):e2001069. doi: 10.1371/journal.pbio.2001069. eCollection 2017 Apr.
4
The circadian clock coordinates ribosome biogenesis.
PLoS Biol. 2013;11(1):e1001455. doi: 10.1371/journal.pbio.1001455. Epub 2013 Jan 3.
5
Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames.
Genome Res. 2015 Dec;25(12):1848-59. doi: 10.1101/gr.195404.115. Epub 2015 Oct 20.
6
Genetic deletion of the circadian clock transcription factor BMAL1 and chronic alcohol consumption differentially alter hepatic glycogen in mice.
Am J Physiol Gastrointest Liver Physiol. 2018 Mar 1;314(3):G431-G447. doi: 10.1152/ajpgi.00281.2017. Epub 2017 Nov 30.
7
Night-time feeding of Bmal1-/- mice restores SCFA rhythms and their effect on ghrelin.
J Endocrinol. 2020 Apr;245(1):155-164. doi: 10.1530/JOE-20-0011.
8
The RNA-binding protein hnRNP Q represses translation of the clock gene in murine cells.
J Biol Chem. 2019 May 10;294(19):7682-7691. doi: 10.1074/jbc.RA118.006947. Epub 2019 Apr 4.
9
A unifying model for mTORC1-mediated regulation of mRNA translation.
Nature. 2012 May 2;485(7396):109-13. doi: 10.1038/nature11083.
10
The hepatic circadian clock regulates the choline kinase α gene through the BMAL1-REV-ERBα axis.
Chronobiol Int. 2015;32(6):774-84. doi: 10.3109/07420528.2015.1046601. Epub 2015 Jun 30.

引用本文的文献

1
Mealtime alters daily rhythm in nuclear O-GlcNAc proteome to regulate hepatic gene expression.
bioRxiv. 2025 Jun 19:2024.06.13.598946. doi: 10.1101/2024.06.13.598946.
2
Biological rhythms: Living your life, one half-day at a time.
NPJ Biol Timing Sleep. 2025;2(1):21. doi: 10.1038/s44323-025-00037-1. Epub 2025 Jun 3.
3
Potential bidirectional communication between the liver and the central circadian clock in MASLD.
NPJ Metab Health Dis. 2025;3(1):15. doi: 10.1038/s44324-025-00058-1. Epub 2025 Apr 9.
4
Circadian metabolic adaptations to infections.
Philos Trans R Soc Lond B Biol Sci. 2025 Jan 23;380(1918):20230473. doi: 10.1098/rstb.2023.0473.
5
Circadian clock communication during homeostasis and ageing.
Nat Rev Mol Cell Biol. 2025 Apr;26(4):314-331. doi: 10.1038/s41580-024-00802-3. Epub 2025 Jan 3.
6
Circadian Control of Protein Synthesis.
Bioessays. 2025 Mar;47(3):e202300158. doi: 10.1002/bies.202300158. Epub 2024 Dec 12.
7
Circadian regulation of translation.
RNA Biol. 2024 Jan;21(1):14-24. doi: 10.1080/15476286.2024.2408524. Epub 2024 Sep 26.
8
Circadian period is compensated for repressor protein turnover rates in single cells.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2404738121. doi: 10.1073/pnas.2404738121. Epub 2024 Aug 14.
9
Maternal high fat diet induces circadian clock-independent endocrine alterations impacting the metabolism of the offspring.
iScience. 2024 Jun 21;27(7):110343. doi: 10.1016/j.isci.2024.110343. eCollection 2024 Jul 19.
10
Circadian regulation of macromolecular complex turnover and proteome renewal.
EMBO J. 2024 Jul;43(13):2813-2833. doi: 10.1038/s44318-024-00121-5. Epub 2024 May 22.

本文引用的文献

2
The Circadian Protein BMAL1 Regulates Translation in Response to S6K1-Mediated Phosphorylation.
Cell. 2015 May 21;161(5):1138-1151. doi: 10.1016/j.cell.2015.04.002. Epub 2015 May 14.
3
Circadian metabolism in the light of evolution.
Endocr Rev. 2015 Jun;36(3):289-304. doi: 10.1210/er.2015-1007. Epub 2015 Apr 30.
4
Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock.
Cell. 2015 Mar 26;161(1):84-92. doi: 10.1016/j.cell.2015.03.015.
6
Mitochondrial division and fusion in metabolism.
Curr Opin Cell Biol. 2015 Apr;33:111-8. doi: 10.1016/j.ceb.2015.02.001. Epub 2015 Feb 19.
7
Circadian timing of metabolism in animal models and humans.
J Intern Med. 2015 May;277(5):513-27. doi: 10.1111/joim.12347. Epub 2015 Feb 6.
8
Quantitative profiling of initiating ribosomes in vivo.
Nat Methods. 2015 Feb;12(2):147-53. doi: 10.1038/nmeth.3208. Epub 2014 Dec 8.
10
The circadian clock maintains cardiac function by regulating mitochondrial metabolism in mice.
PLoS One. 2014 Nov 12;9(11):e112811. doi: 10.1371/journal.pone.0112811. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验