Alvarez Mariano J, Shen Yao, Giorgi Federico M, Lachmann Alexander, Ding B Belinda, Ye B Hilda, Califano Andrea
Department of Systems Biology, Columbia University, New York, New York, USA.
DarwinHealth Inc., New York, New York, USA.
Nat Genet. 2016 Aug;48(8):838-47. doi: 10.1038/ng.3593. Epub 2016 Jun 20.
Identifying the multiple dysregulated oncoproteins that contribute to tumorigenesis in a given patient is crucial for developing personalized treatment plans. However, accurate inference of aberrant protein activity in biological samples is still challenging as genetic alterations are only partially predictive and direct measurements of protein activity are generally not feasible. To address this problem we introduce and experimentally validate a new algorithm, virtual inference of protein activity by enriched regulon analysis (VIPER), for accurate assessment of protein activity from gene expression data. We used VIPER to evaluate the functional relevance of genetic alterations in regulatory proteins across all samples in The Cancer Genome Atlas (TCGA). In addition to accurately infer aberrant protein activity induced by established mutations, we also identified a fraction of tumors with aberrant activity of druggable oncoproteins despite a lack of mutations, and vice versa. In vitro assays confirmed that VIPER-inferred protein activity outperformed mutational analysis in predicting sensitivity to targeted inhibitors.
识别导致特定患者肿瘤发生的多种失调癌蛋白对于制定个性化治疗方案至关重要。然而,由于基因改变仅具有部分预测性,且蛋白质活性的直接测量通常不可行,因此准确推断生物样本中的异常蛋白质活性仍然具有挑战性。为了解决这个问题,我们引入并通过实验验证了一种新算法——通过富集调控子分析进行蛋白质活性的虚拟推断(VIPER),用于从基因表达数据中准确评估蛋白质活性。我们使用VIPER来评估癌症基因组图谱(TCGA)中所有样本中调节蛋白基因改变的功能相关性。除了准确推断由已确定的突变诱导的异常蛋白质活性外,我们还发现了一部分肿瘤,尽管缺乏突变,但可药物化癌蛋白具有异常活性,反之亦然。体外试验证实,在预测对靶向抑制剂的敏感性方面,VIPER推断的蛋白质活性优于突变分析。