State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China.
Department of Head and Neck Cancer Surgery, West China School of Stomatology, Sichuan University, Chengdu, China.
Cell Mol Life Sci. 2020 Mar;77(6):1115-1133. doi: 10.1007/s00018-019-03209-y. Epub 2019 Jul 3.
Cancers show a metabolic shift towards aerobic glycolysis. By "corrupting" their microenvironment, carcinoma cells are able to obtain energy substrates to "fuel" their mitochondrial metabolism and cell growth in an autophagy-associated, paracrine manner. However, the metabolic changes and role of normal fibroblasts in this process remain unclear. We devised a novel, indirect co-culture system to elucidate the mechanisms of metabolic coupling between stromal cells and oral squamous cell carcinoma (OSCC) cells. Here, we showed that normal oral fibroblasts (NOFs) and OSCC become metabolically coupled through several processes before acquiring an activated phenotype and without inducing senescence. We observed, for the first time, that NOFs export mitochondria towards OSCCs through both direct contact and via indirect mechanisms. NOFs are activated and are able to acquire a cancer-associated fibroblasts metabolic phenotype when co-cultivation with OSSC cells, by undergoing aerobic glycolysis, secreting more reactive oxygen species (ROS), high L-lactate and overexpressing lactate exporter MCT-4, leading to mitochondrial permeability transition pore (mPTP) opening, hypoxia, and mitophagy. On the other hand, Cav-1-low NOFs generate L-lactate to "fuel" mitochondrial metabolism and anabolic growth of OSCC. Most interestingly, the decrease in AMPK activity and PGC-1α expression might involve in regulation of ROS that functions to maintain final energy and metabolic homeostasis. This indicated, for the first time, the existence of ATP and ROS homeostasis during carcinogenesis. Our study suggests that an efficient therapeutical approach has to target the multiple mechanisms used by them to corrupt the normal surrounding stroma and metabolic homeostasis.
癌症表现出向有氧糖酵解的代谢转变。通过“腐蚀”它们的微环境,癌细胞能够获得能量底物,以自噬相关的旁分泌方式“燃料”其线粒体代谢和细胞生长。然而,正常成纤维细胞在这个过程中的代谢变化和作用仍不清楚。我们设计了一种新颖的间接共培养系统,以阐明基质细胞与口腔鳞状细胞癌(OSCC)细胞之间代谢偶联的机制。在这里,我们表明正常口腔成纤维细胞(NOFs)和 OSCC 在获得激活表型之前,通过几种过程发生代谢偶联,而不会诱导衰老。我们首次观察到,NOFs 通过直接接触和间接机制将线粒体向 OSCC 细胞输出。NOFs 在与 OSSC 细胞共培养时被激活,并能够通过有氧糖酵解、分泌更多的活性氧(ROS)、高 L-乳酸和过表达乳酸转运蛋白 MCT-4 获得与癌症相关的成纤维细胞代谢表型,导致线粒体通透性转换孔(mPTP)打开、缺氧和线粒体自噬。另一方面,Cav-1 低表达的 NOFs 产生 L-乳酸来“燃料”线粒体代谢和 OSCC 的合成代谢生长。最有趣的是,AMPK 活性和 PGC-1α 表达的降低可能涉及 ROS 的调节,ROS 作用是维持最终能量和代谢平衡。这首次表明在癌变过程中存在 ATP 和 ROS 平衡。我们的研究表明,一种有效的治疗方法必须针对它们用于腐蚀正常周围基质和代谢平衡的多种机制。