Suppr超能文献

通过重编程发育机制促进人视网膜神经节细胞轴突再生:mTOR 通路募集的影响。

Human retinal ganglion cell axon regeneration by recapitulating developmental mechanisms: effects of recruitment of the mTOR pathway.

机构信息

Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE 68198, USA.

Department of Cell Physiology, Ruhr University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany.

出版信息

Development. 2019 Jul 4;146(13):dev178012. doi: 10.1242/dev.178012.

Abstract

The poor axon regeneration in the central nervous system (CNS) often leads to permanent functional deficit following disease or injury. For example, degeneration of retinal ganglion cell (RGC) axons in glaucoma leads to irreversible loss of vision. Here, we have tested the hypothesis that the mTOR pathway regulates the development of human RGCs and that its recruitment after injury facilitates axon regeneration. We observed that the mTOR pathway is active during RGC differentiation, and using the induced pluripotent stem cell model of neurogenesis show that it facilitates the differentiation, function and neuritogenesis of human RGCs. Using a microfluidic model, we demonstrate that recruitment of the mTOR pathway facilitates human RGC axon regeneration after axotomy, providing evidence that the recapitulation of developmental mechanism(s) might be a viable approach for facilitating axon regeneration in the diseased or injured human CNS, thus helping to reduce and/or recover loss of function.

摘要

中枢神经系统(CNS)中的轴突再生能力差常常导致疾病或损伤后出现永久性的功能缺陷。例如,青光眼患者的视网膜神经节细胞(RGC)轴突变性会导致不可逆转的视力丧失。在这里,我们检验了这样一个假设,即 mTOR 通路调节人 RGC 的发育,并且其在损伤后的募集有助于轴突再生。我们观察到 mTOR 通路在 RGC 分化过程中是活跃的,并且使用神经发生的诱导多能干细胞模型表明它促进了人 RGC 的分化、功能和神经突生成。我们使用微流控模型证明,mTOR 通路的募集有助于轴突切断后人类 RGC 轴突的再生,这为发育机制的再现可能是促进患病或损伤的人类中枢神经系统中轴突再生的可行方法提供了证据,从而有助于减少和/或恢复功能丧失。

相似文献

2
Activation of the BMP4/Smad1 Pathway Promotes Retinal Ganglion Cell Survival and Axon Regeneration.
Invest Ophthalmol Vis Sci. 2019 Apr 1;60(5):1748-1759. doi: 10.1167/iovs.18-26449.
3
Developmentally upregulated transcriptional elongation factor a like 3 suppresses axon regeneration after optic nerve injury.
Neurosci Lett. 2021 Nov 20;765:136260. doi: 10.1016/j.neulet.2021.136260. Epub 2021 Sep 21.
4
Exploiting mTOR signaling: a novel translatable treatment strategy for traumatic optic neuropathy?
Invest Ophthalmol Vis Sci. 2013 Oct 23;54(10):6903-16. doi: 10.1167/iovs.13-12803.
5
Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway.
Science. 2008 Nov 7;322(5903):963-6. doi: 10.1126/science.1161566.
6
Interleukin-6 contributes to CNS axon regeneration upon inflammatory stimulation.
Cell Death Dis. 2013 Apr 25;4(4):e609. doi: 10.1038/cddis.2013.126.
7
HDAC5 promotes optic nerve regeneration by activating the mTOR pathway.
Exp Neurol. 2019 Jul;317:271-283. doi: 10.1016/j.expneurol.2019.03.011. Epub 2019 Mar 22.
8
Advances in Regeneration of Retinal Ganglion Cells and Optic Nerves.
Int J Mol Sci. 2021 Apr 28;22(9):4616. doi: 10.3390/ijms22094616.

引用本文的文献

3
Human microglia-derived proinflammatory cytokines facilitate human retinal ganglion cell development and regeneration.
Stem Cell Reports. 2024 Aug 13;19(8):1092-1106. doi: 10.1016/j.stemcr.2024.06.009. Epub 2024 Jul 25.
4
Crosstalk between the mTOR pathway and primary cilia in human diseases.
Curr Top Dev Biol. 2023;155:1-37. doi: 10.1016/bs.ctdb.2023.09.004. Epub 2023 Nov 4.
7
Identification of hub genes for glaucoma: a study based on bioinformatics analysis and experimental verification.
Int J Ophthalmol. 2023 Jul 18;16(7):1015-1025. doi: 10.18240/ijo.2023.07.03. eCollection 2023.
9
Moving CNS axon growth and regeneration research into human model systems.
Front Neurosci. 2023 Jun 22;17:1198041. doi: 10.3389/fnins.2023.1198041. eCollection 2023.
10
Optic nerve diseases and regeneration: How far are we from the promised land?
Clin Exp Ophthalmol. 2023 Aug;51(6):627-641. doi: 10.1111/ceo.14259. Epub 2023 Jun 15.

本文引用的文献

1
Sestrin modulator NV-5138 produces rapid antidepressant effects via direct mTORC1 activation.
J Clin Invest. 2019 Apr 16;129(6):2542-2554. doi: 10.1172/JCI126859.
2
Discovery of NV-5138, the first selective Brain mTORC1 activator.
Sci Rep. 2019 Mar 11;9(1):4107. doi: 10.1038/s41598-019-40693-5.
3
Different Effect of in Retinal Ganglion Cells Survival and Axon Regeneration.
Front Genet. 2018 Dec 18;9:633. doi: 10.3389/fgene.2018.00633. eCollection 2018.
4
Epigenetic regulator UHRF1 inactivates REST and growth suppressor gene expression via DNA methylation to promote axon regeneration.
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):E12417-E12426. doi: 10.1073/pnas.1812518115. Epub 2018 Dec 10.
5
Lin28 Signaling Supports Mammalian PNS and CNS Axon Regeneration.
Cell Rep. 2018 Sep 4;24(10):2540-2552.e6. doi: 10.1016/j.celrep.2018.07.105.
6
Axon Regeneration in the Central Nervous System: Facing the Challenges from the Inside.
Annu Rev Cell Dev Biol. 2018 Oct 6;34:495-521. doi: 10.1146/annurev-cellbio-100617-062508. Epub 2018 Jul 25.
7
mTORC1 accelerates retinal development via the immunoproteasome.
Nat Commun. 2018 Jun 27;9(1):2502. doi: 10.1038/s41467-018-04774-9.
8
Lin28a regulates neurogliogenesis in mammalian retina through the Igf signaling.
Dev Biol. 2018 Aug 15;440(2):113-128. doi: 10.1016/j.ydbio.2018.05.007. Epub 2018 May 24.
9
Molecular Anatomy of the Developing Human Retina.
Dev Cell. 2017 Dec 18;43(6):763-779.e4. doi: 10.1016/j.devcel.2017.10.029. Epub 2017 Dec 7.
10
A Novel Retinal Ganglion Cell Promoter for Utility in AAV Vectors.
Front Neurosci. 2017 Sep 21;11:521. doi: 10.3389/fnins.2017.00521. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验