Suppr超能文献

足球和篮球运动员跳跃表现特征的分类:一种逻辑回归方法。

Classification of Soccer and Basketball Players' Jumping Performance Characteristics: A Logistic Regression Approach.

作者信息

Chalitsios Christos, Nikodelis Thomas, Panoutsakopoulos Vassilios, Chassanidis Christos, Kollias Iraklis

机构信息

Biomechanics Laboratory, Department of Physical Education and Sports Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

出版信息

Sports (Basel). 2019 Jul 4;7(7):163. doi: 10.3390/sports7070163.

Abstract

This study aimed to examine countermovement jump (CMJ) kinetic data using logistic regression, in order to distinguish sports-related mechanical profiles. Eighty-one professional basketball and soccer athletes participated, each performing three CMJs on a force platform. Inferential parametric and nonparametric statistics were performed to explore group differences. Binary logistic regression was used to model the response variable (soccer or not soccer). Statistical significance ( < 0.05) was reached for differences between groups in maximum braking rate of force development (RFD, U = 1035), mean braking rate of force development (RFD, U = 1038), propulsive impulse (IMP, t = 2.375), minimum value of vertical displacement for center of mass (S, t = 3.135), and time difference (% of impulse time; Δ) between the peak value of maximum force value (F) and S (U = 1188). Logistic regression showed that RFD, impulse during the downward phase (IMP), IMP, and Δ were all significant predictors. The model showed that soccer group membership could be strongly related to IMP, with the odds ratio being 6.48 times higher from the basketball group, whereas RFD, IMP, and Δ were related to basketball group. The results imply that soccer players execute CMJ differently compared to basketball players, exhibiting increased countermovement depth and impulse generation during the propulsive phase.

摘要

本研究旨在使用逻辑回归分析反向纵跳(CMJ)动力学数据,以区分与运动相关的力学特征。81名职业篮球和足球运动员参与其中,每人在测力平台上进行三次反向纵跳。采用参数和非参数推断统计方法来探究组间差异。使用二元逻辑回归对响应变量(足球或非足球)进行建模。在最大力量发展制动率(RFD,U = 1035)、平均力量发展制动率(RFD,U = 1038)、推进冲量(IMP,t = 2.375)、质心垂直位移最小值(S,t = 3.135)以及最大力值(F)峰值与S之间的时间差(冲量时间百分比;Δ,U = 1188)方面,组间差异达到统计学显著性(< 0.05)。逻辑回归显示,RFD、下降阶段冲量(IMP)、IMP和Δ均为显著预测因子。该模型表明,足球组与IMP密切相关,足球组的优势比是篮球组的6.48倍,而RFD、IMP和Δ与篮球组相关。结果表明,与篮球运动员相比,足球运动员执行反向纵跳的方式不同,在推进阶段表现出更大的反向运动深度和冲量产生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d72d/6681078/8fcbd92dc60a/sports-07-00163-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验