Suppr超能文献

血液血浆蛋白与超疏水性二氧化钛纳米管表面的相互作用。

Interaction of blood plasma proteins with superhemophobic titania nanotube surfaces.

机构信息

School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO, USA.

School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.

出版信息

Nanomedicine. 2019 Oct;21:102046. doi: 10.1016/j.nano.2019.102046. Epub 2019 Jul 3.

Abstract

The need to improve blood biocompatibility of medical devices is urgent. As soon as blood encounters a biomaterial implant, proteins adsorb on its surfaces, often leading to several complications such as thrombosis and failure of the device. Therefore, controlling protein adsorption plays a major role in developing hemocompatible materials. In this study, the interaction of key blood plasma proteins with superhemophobic titania nanotube substrates and the blood clotting responses was investigated. The substrate stability was evaluated and fibrinogen adsorption and thrombin formation from plasma were assessed using ELISA. Whole blood clotting kinetics was also investigated, and Factor XII activation on the substrates was characterized by an in vitro plasma coagulation time assay. The results show that superhemophobic titania nanotubes are stable and considerably decrease surface protein adsorption/Factor XII activation as well as delay the whole blood clotting, and thus can be a promising approach for designing blood contacting medical devices.

摘要

提高医疗器械血液生物相容性的需求迫在眉睫。一旦血液遇到生物材料植入物,蛋白质就会吸附在其表面,这通常会导致血栓形成和器械失效等多种并发症。因此,控制蛋白质吸附在开发血液相容性材料方面起着重要作用。在这项研究中,研究了关键血浆蛋白与超疏水性二氧化钛纳米管基底的相互作用以及血液凝固反应。评估了基底的稳定性,并使用 ELISA 评估了纤维蛋白原吸附和凝血酶从血浆中的形成。还研究了全血凝固动力学,并通过体外血浆凝固时间测定法表征了因子 XII在基底上的激活。结果表明,超疏水性二氧化钛纳米管是稳定的,可大大减少表面蛋白质吸附/因子 XII激活,并延迟全血凝固,因此可能是设计接触血液的医疗器械的一种有前途的方法。

相似文献

1
Interaction of blood plasma proteins with superhemophobic titania nanotube surfaces.
Nanomedicine. 2019 Oct;21:102046. doi: 10.1016/j.nano.2019.102046. Epub 2019 Jul 3.
2
Enhanced hemocompatibility and antibacterial activity on titania nanotubes with tanfloc/heparin polyelectrolyte multilayers.
J Biomed Mater Res A. 2020 Apr;108(4):992-1005. doi: 10.1002/jbm.a.36876. Epub 2020 Jan 11.
3
Hemocompatibility of titania nanotube arrays.
J Biomed Mater Res A. 2010 Nov;95(2):350-60. doi: 10.1002/jbm.a.32853.
4
Hemocompatibility of Superhemophobic Titania Surfaces.
Adv Healthc Mater. 2017 Feb;6(4). doi: 10.1002/adhm.201600717. Epub 2016 Dec 21.
6
Polyelectrolyte multilayers containing a tannin derivative polyphenol improve blood compatibility through interactions with platelets and serum proteins.
Mater Sci Eng C Mater Biol Appl. 2020 Jul;112:110919. doi: 10.1016/j.msec.2020.110919. Epub 2020 Apr 4.
7
Effects of diameters and crystals of titanium dioxide nanotube arrays on blood compatibility and endothelial cell behaviors.
Colloids Surf B Biointerfaces. 2019 Dec 1;184:110521. doi: 10.1016/j.colsurfb.2019.110521. Epub 2019 Sep 23.
9
Blood coagulation on biomaterials requires the combination of distinct activation processes.
Biomaterials. 2009 Sep;30(27):4447-56. doi: 10.1016/j.biomaterials.2009.05.044. Epub 2009 Jun 16.

引用本文的文献

1
Interaction of Blood and Bacteria with Slippery Hydrophilic Surfaces.
Adv Mater Interfaces. 2024 Jan 4;11(1). doi: 10.1002/admi.202300564. Epub 2023 Oct 15.
2
Tanfloc-Modified Titanium Surfaces: Optimizing Blood Coagulant Activity and Stem Cell Compatibility.
ACS Biomater Sci Eng. 2025 Mar 10;11(3):1445-1455. doi: 10.1021/acsbiomaterials.4c02106. Epub 2025 Feb 27.
4
Endothelial and smooth muscle cell interaction with hydrothermally treated titanium surfaces.
In Vitro Model. 2024 Jul 19;3(2-3):109-123. doi: 10.1007/s44164-024-00073-4. eCollection 2024 Jun.
5
Erythrocyte interaction with titanium nanostructured surfaces.
In Vitro Model. 2022 Aug 31;1(4-5):347-363. doi: 10.1007/s44164-022-00031-y. eCollection 2022 Nov.
6
Improved in vitro endothelialization on nanostructured titania with tannin/glycosaminoglycan-based polyelectrolyte multilayers.
In Vitro Model. 2022 Jun 3;1(3):249-259. doi: 10.1007/s44164-022-00024-x. eCollection 2022 Jun.
7
Titania nanotubes modified with copper enhance osteogenic differentiation of adipose derived stem cells.
RSC Adv. 2024 Oct 29;14(46):34362-34371. doi: 10.1039/d4ra05038j. eCollection 2024 Oct 23.
8
Hemp-Based Sustainable Slippery Surfaces: Icephobic and Antithrombotic Properties.
ACS Sustain Chem Eng. 2023 Feb 13;11(6):2397-2403. doi: 10.1021/acssuschemeng.2c06233. Epub 2023 Feb 2.

本文引用的文献

1
Blood compatible materials: state of the art.
J Mater Chem B. 2014 Sep 21;2(35):5718-5738. doi: 10.1039/c4tb00881b. Epub 2014 Aug 1.
3
Small size fullerenol nanoparticles inhibit thrombosis and blood coagulation through inhibiting activities of thrombin and FXa.
Nanomedicine. 2018 Apr;14(3):929-939. doi: 10.1016/j.nano.2017.12.013. Epub 2018 Jan 6.
4
Contact (kallikrein/kinin) system activation in whole human blood induced by low concentrations of α-FeO nanoparticles.
Nanomedicine. 2018 Apr;14(3):735-744. doi: 10.1016/j.nano.2017.12.008. Epub 2017 Dec 24.
5
Hemocompatibility of hyaluronan enhanced linear low density polyethylene for blood contacting applications.
J Biomed Mater Res B Appl Biomater. 2018 Jul;106(5):1964-1975. doi: 10.1002/jbm.b.34010. Epub 2017 Sep 30.
6
Fabrication of Nanostructured Omniphobic and Superomniphobic Surfaces with Inexpensive CO Laser Engraver.
ACS Appl Mater Interfaces. 2017 Aug 9;9(31):25656-25661. doi: 10.1021/acsami.7b06924. Epub 2017 Jul 25.
8
Hemocompatibility of Superhemophobic Titania Surfaces.
Adv Healthc Mater. 2017 Feb;6(4). doi: 10.1002/adhm.201600717. Epub 2016 Dec 21.
9
The profile of adsorbed plasma and serum proteins on methacrylic acid copolymer beads: Effect on complement activation.
Biomaterials. 2017 Feb;118:74-83. doi: 10.1016/j.biomaterials.2016.11.036. Epub 2016 Nov 25.
10
Superhydrophobic materials for biomedical applications.
Biomaterials. 2016 Oct;104:87-103. doi: 10.1016/j.biomaterials.2016.06.050. Epub 2016 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验