Suppr超能文献

基于大麻的可持续防滑表面:憎冰和抗血栓特性。

Hemp-Based Sustainable Slippery Surfaces: Icephobic and Antithrombotic Properties.

作者信息

Sutherland Daniel J, Rather Adil M, Sabino Roberta M, Vallabhuneni Sravanthi, Wang Wei, Popat Ketul C, Kota Arun K

机构信息

Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80524, United States.

Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, United States.

出版信息

ACS Sustain Chem Eng. 2023 Feb 13;11(6):2397-2403. doi: 10.1021/acssuschemeng.2c06233. Epub 2023 Feb 2.

Abstract

With the passage of the 2018 Farm Bill that removed hemp from the Controlled Substances Act altogether, production of hemp is experiencing a renaissance. Building on this revival and re-emergence of hemp, we designed and fabricated hemp-based sustainable and robust slippery surfaces by coating hemp paper with beeswax and subsequently infusing it with hemp oil. A wide variety of aqueous liquids and beverages easily slide on our hemp-based sustainable slippery surfaces, without leaving a trace. We also fabricated hemp-based sustainable slippery surfaces using different textured metals. Our hemp-based sustainable slippery metal surfaces display good icephobic and antithrombotic properties. With these attributes, we envision that our hemp-based sustainable slippery surfaces will pave the path to more safe, non-toxic, and biodegradable or recyclable slippery surfaces for applications in food packaging, anti-icing or de-icing coatings, and antithrombotic medical devices.

摘要

随着2018年《农业法案》的通过,该法案将大麻完全从《受控物质法案》中移除,大麻生产正在经历复兴。基于大麻的这种复兴和重新出现,我们通过用蜂蜡涂覆麻纸并随后注入大麻油,设计并制造了基于大麻的可持续且坚固的光滑表面。各种各样的水性液体和饮料能够轻松地在我们基于大麻的可持续光滑表面上滑动,不留痕迹。我们还使用不同纹理的金属制造了基于大麻的可持续光滑表面。我们基于大麻的可持续光滑金属表面具有良好的憎冰和抗血栓性能。凭借这些特性,我们设想我们基于大麻的可持续光滑表面将为食品包装、防冰或除冰涂层以及抗血栓医疗设备等应用中更安全、无毒且可生物降解或可回收的光滑表面铺平道路。

相似文献

1
Hemp-Based Sustainable Slippery Surfaces: Icephobic and Antithrombotic Properties.
ACS Sustain Chem Eng. 2023 Feb 13;11(6):2397-2403. doi: 10.1021/acssuschemeng.2c06233. Epub 2023 Feb 2.
2
Icephobic performance of one-step silicone-oil-infused slippery coatings: Effects of surface energy, oil and nanoparticle contents.
J Colloid Interface Sci. 2020 Jan 15;558:251-258. doi: 10.1016/j.jcis.2019.09.119. Epub 2019 Sep 30.
3
Transparent slippery surfaces made with sustainable porous cellulose lauroyl ester films.
ACS Appl Mater Interfaces. 2014 May 14;6(9):6969-76. doi: 10.1021/am5020343. Epub 2014 May 1.
4
Icephobic Behavior of UV-Cured Polymer Networks Incorporated into Slippery Lubricant-Infused Porous Surfaces: Improving SLIPS Durability.
ACS Appl Mater Interfaces. 2018 Jan 24;10(3):2890-2896. doi: 10.1021/acsami.7b14433. Epub 2018 Jan 8.
5
Moth-Eye Mimicking Solid Slippery Glass Surface with Icephobicity, Transparency, and Self-Healing.
ACS Nano. 2020 Aug 25;14(8):10198-10209. doi: 10.1021/acsnano.0c03463. Epub 2020 Jul 31.
6
One-Step Fabrication of Bioinspired Lubricant-Regenerable Icephobic Slippery Liquid-Infused Porous Surfaces.
ACS Omega. 2018 Aug 30;3(8):10139-10144. doi: 10.1021/acsomega.8b01148. eCollection 2018 Aug 31.
7
Thermally Sprayed Coatings: Novel Surface Engineering Strategy Towards Icephobic Solutions.
Materials (Basel). 2020 Mar 21;13(6):1434. doi: 10.3390/ma13061434.
8
A Transparent Photo/Electrothermal Composite Coating with Liquid-like Slippery Property for All-Day Anti-/De-Icing.
ACS Appl Mater Interfaces. 2024 Aug 7;16(31):41400-41408. doi: 10.1021/acsami.4c03683. Epub 2024 Jul 28.
9
Anisotropic Icephobic Mechanisms of Textured Surface: Barrier or Accelerator?
ACS Appl Mater Interfaces. 2024 Jul 10;16(27):35852-35863. doi: 10.1021/acsami.4c08004. Epub 2024 Jun 27.

引用本文的文献

1
Interaction of Blood and Bacteria with Slippery Hydrophilic Surfaces.
Adv Mater Interfaces. 2024 Jan 4;11(1). doi: 10.1002/admi.202300564. Epub 2023 Oct 15.

本文引用的文献

1
Sustainable Polymers: Opportunities for the Next Decade.
ACS Macro Lett. 2013 Jun 18;2(6):550-554. doi: 10.1021/mz400207g. Epub 2013 Jun 5.
2
Thrombogenic and Inflammatory Reactions to Biomaterials in Medical Devices.
Front Bioeng Biotechnol. 2020 Mar 12;8:123. doi: 10.3389/fbioe.2020.00123. eCollection 2020.
3
Artificial Humic Acids: Sustainable Materials against Climate Change.
Adv Sci (Weinh). 2020 Jan 21;7(5):1902992. doi: 10.1002/advs.201902992. eCollection 2020 Mar.
4
Enhanced hemocompatibility and antibacterial activity on titania nanotubes with tanfloc/heparin polyelectrolyte multilayers.
J Biomed Mater Res A. 2020 Apr;108(4):992-1005. doi: 10.1002/jbm.a.36876. Epub 2020 Jan 11.
5
Hemocompatibility of Super-Repellent surfaces: Current and Future.
Mater Horiz. 2019 Oct 1;6(8):1596-1610. doi: 10.1039/C9MH00051H. Epub 2019 May 15.
6
Interaction of blood plasma proteins with superhemophobic titania nanotube surfaces.
Nanomedicine. 2019 Oct;21:102046. doi: 10.1016/j.nano.2019.102046. Epub 2019 Jul 3.
7
The blood compatibility challenge. Part 1: Blood-contacting medical devices: The scope of the problem.
Acta Biomater. 2019 Aug;94:2-10. doi: 10.1016/j.actbio.2019.06.021. Epub 2019 Jun 18.
8
Low-interfacial toughness materials for effective large-scale deicing.
Science. 2019 Apr 26;364(6438):371-375. doi: 10.1126/science.aav1266.
9
Pectin-chitosan membrane scaffold imparts controlled stem cell adhesion and proliferation.
Carbohydr Polym. 2018 Oct 1;197:47-56. doi: 10.1016/j.carbpol.2018.05.062. Epub 2018 May 25.
10
Emerging Applications of Bioinspired Slippery Surfaces in Biomedical Fields.
Chemistry. 2018 Oct 9;24(56):14864-14877. doi: 10.1002/chem.201801368. Epub 2018 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验