Suppr超能文献

鞋类磨损进展的计算模型:与实验结果的比较

Computational Model of Shoe Wear Progression: Comparison with Experimental Results.

作者信息

Moghaddam Seyed Reza M, Hemler Sarah L, Redfern Mark S, Jacobs Tevis Db, Beschorner Kurt E

机构信息

Department of Bioengineering, University of Pittsburgh, Benedum Engineering Hall 302, 3700 O'Hara St., Pittsburgh, PA 15261.

Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Benedum Hall 636, 3700 O'Hara St., Pittsburgh, PA 15261.

出版信息

Wear. 2019 Mar 15;422-423:235-241. doi: 10.1016/j.wear.2019.01.070.

Abstract

Worn shoes increase the risk of slip and fall accidents. Few research efforts have attempted to predict the progression of shoe wear. This study presents a computational modeling framework that simulates wear progression in footwear outsoles based on finite element analysis and Archard's equation for wear. The results of the computational model were qualitatively and quantitatively compared with experimental results from shoes subjected to an accelerated wear protocol. Key variables of interest were the order in which individual tread blocks were worn and the size of the worn region. The order in which shoe treads became completely worn were strongly correlated between the models and experiments ( > 0.74, < 0.005 for all of the shoes). The ability of the model to predict the size of the worn region varied across the shoe designs. Findings demonstrate the capability of the computational modeling methodology to provide realistic predictions of shoe wear progression. This model represents a promising first step to developing a model that can guide footwear replacement programs and footwear design with durable slip-resistance.

摘要

鞋子磨损会增加滑倒和跌倒事故的风险。很少有研究致力于预测鞋子磨损的进程。本研究提出了一个计算建模框架,该框架基于有限元分析和阿查德磨损方程来模拟鞋外底的磨损进程。将计算模型的结果与经过加速磨损试验的鞋子的实验结果进行了定性和定量比较。感兴趣的关键变量是各个胎面花纹块的磨损顺序和磨损区域的大小。模型与实验中鞋胎面完全磨损的顺序高度相关(所有鞋子的相关系数均>0.74,P<0.005)。该模型预测磨损区域大小的能力因鞋类设计而异。研究结果证明了计算建模方法能够对鞋子磨损进程做出实际预测。该模型是开发一个能够指导鞋类更换计划和具有持久防滑性能的鞋类设计模型的有前景的第一步。

相似文献

1
Computational Model of Shoe Wear Progression: Comparison with Experimental Results.
Wear. 2019 Mar 15;422-423:235-241. doi: 10.1016/j.wear.2019.01.070.
2
Traction performance across the life of slip-resistant footwear: Preliminary results from a longitudinal study.
J Safety Res. 2020 Sep;74:219-225. doi: 10.1016/j.jsr.2020.06.005. Epub 2020 Jul 9.
3
Frictional Performance of Geometrically Modified Footwear Outsoles with Obliquely Oriented Tread Patterns.
IISE Trans Occup Ergon Hum Factors. 2024 Oct-Dec;12(4):233-245. doi: 10.1080/24725838.2024.2430199. Epub 2024 Nov 29.
4
Changes in under-shoe traction and fluid drainage for progressively worn shoe tread.
Appl Ergon. 2019 Oct;80:35-42. doi: 10.1016/j.apergo.2019.04.014. Epub 2019 May 15.
5
Validation of a portable shoe tread scanner to predict slip risk.
J Safety Res. 2023 Sep;86:5-11. doi: 10.1016/j.jsr.2023.05.014. Epub 2023 May 27.
6
Worn region size of shoe outsole impacts human slips: Testing a mechanistic model.
J Biomech. 2020 May 22;105:109797. doi: 10.1016/j.jbiomech.2020.109797. Epub 2020 Apr 18.
7
Differences in Friction Performance between New and Worn Shoes.
IISE Trans Occup Ergon Hum Factors. 2020 Oct-Dec;8(4):209-214. doi: 10.1080/24725838.2021.1925998. Epub 2021 Jun 16.
8
Gait kinetics impact shoe tread wear rate.
Gait Posture. 2021 May;86:157-161. doi: 10.1016/j.gaitpost.2021.03.006. Epub 2021 Mar 8.
9
Effects of natural shoe wear on traction performance: a longitudinal study.
Footwear Sci. 2022;14(1):1-12. doi: 10.1080/19424280.2021.1994022. Epub 2021 Nov 11.
10
Predicting Hydrodynamic Conditions under Worn Shoes using the Tapered-Wedge Solution of Reynolds Equation.
Tribol Int. 2020 May;145. doi: 10.1016/j.triboint.2020.106161. Epub 2020 Jan 8.

引用本文的文献

1
Enhancing Footwear Safety for Fall Prevention in Older Adults: A Comprehensive Review of Design Features.
Ann Geriatr Med Res. 2024 Jun;28(2):121-133. doi: 10.4235/agmr.23.0167. Epub 2024 Jan 22.
2
Shoe Tread Wear Occurs Primarily during Early Stance and Precedes the Peak Required Coefficient of Friction.
Footwear Sci. 2022;14(3):219-228. doi: 10.1080/19424280.2022.2124319. Epub 2022 Sep 29.
3
Effects of Attrition Shoes on Kinematics and Kinetics of Lower Limb Joints During Walking.
Front Bioeng Biotechnol. 2022 Feb 9;10:824297. doi: 10.3389/fbioe.2022.824297. eCollection 2022.
5
Predicting Hydrodynamic Conditions under Worn Shoes using the Tapered-Wedge Solution of Reynolds Equation.
Tribol Int. 2020 May;145. doi: 10.1016/j.triboint.2020.106161. Epub 2020 Jan 8.
6
Vinyl Composite Tile Surrogate for Mechanical Slip Testing.
IISE Trans Occup Ergon Hum Factors. 2019;7(2):132-141. doi: 10.1080/24725838.2019.1637381. Epub 2019 Jul 19.
7
An observational ergonomic tool for assessing the worn condition of slip-resistant shoes.
Appl Ergon. 2020 Oct;88:103140. doi: 10.1016/j.apergo.2020.103140. Epub 2020 May 20.
8
Changes in under-shoe traction and fluid drainage for progressively worn shoe tread.
Appl Ergon. 2019 Oct;80:35-42. doi: 10.1016/j.apergo.2019.04.014. Epub 2019 May 15.

本文引用的文献

1
A Method for Measuring Fluid Pressures in the Shoe-Floor-Fluid Interface: Application to Shoe Tread Evaluation.
IIE Trans Occup. 2014;2(2):53-59. doi: 10.1080/21577323.2014.919367. Epub 2014 Nov 24.
2
Coefficient of friction testing parameters influence the prediction of human slips.
Appl Ergon. 2018 Jul;70:118-126. doi: 10.1016/j.apergo.2018.02.017. Epub 2018 Mar 20.
3
Performance testing of work shoes labeled as slip resistant.
Appl Ergon. 2018 Apr;68:304-312. doi: 10.1016/j.apergo.2017.12.008. Epub 2017 Dec 26.
4
Predictive multiscale computational model of shoe-floor coefficient of friction.
J Biomech. 2018 Jan 3;66:145-152. doi: 10.1016/j.jbiomech.2017.11.009. Epub 2017 Nov 16.
6
Estimated Lifetime Medical and Work-Loss Costs of Fatal Injuries--United States, 2013.
MMWR Morb Mortal Wkly Rep. 2015 Oct 2;64(38):1074-7. doi: 10.15585/mmwr.mm6438a4.
8
Fluid pressures at the shoe-floor-contaminant interface during slips: effects of tread and implications on slip severity.
J Biomech. 2014 Jan 22;47(2):458-63. doi: 10.1016/j.jbiomech.2013.10.046. Epub 2013 Nov 8.
9
Prediction of slips: an evaluation of utilized coefficient of friction and available slip resistance.
Ergonomics. 2006 Aug 15;49(10):982-95. doi: 10.1080/00140130600665687.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验