Dept. of Diagnostic Radiology, University of Turku, Turku, Finland.
Dept. of Future Technologies, University of Turku, Turku, Finland.
PLoS One. 2019 Jul 8;14(7):e0217702. doi: 10.1371/journal.pone.0217702. eCollection 2019.
To develop and validate a classifier system for prediction of prostate cancer (PCa) Gleason score (GS) using radiomics and texture features of T2-weighted imaging (T2w), diffusion weighted imaging (DWI) acquired using high b values, and T2-mapping (T2).
T2w, DWI (12 b values, 0-2000 s/mm2), and T2 data sets of 62 patients with histologically confirmed PCa were acquired at 3T using surface array coils. The DWI data sets were post-processed using monoexponential and kurtosis models, while T2w was standardized to a common scale. Local statistics and 8 different radiomics/texture descriptors were utilized at different configurations to extract a total of 7105 unique per-tumor features. Regularized logistic regression with implicit feature selection and leave pair out cross validation was used to discriminate tumors with 3+3 vs >3+3 GS.
In total, 100 PCa lesions were analysed, of those 20 and 80 had GS of 3+3 and >3+3, respectively. The best model performance was obtained by selecting the top 1% features of T2w, ADCm and K with ROC AUC of 0.88 (95% CI of 0.82-0.95). Features from T2 mapping provided little added value. The most useful texture features were based on the gray-level co-occurrence matrix, Gabor transform, and Zernike moments.
Texture feature analysis of DWI, post-processed using monoexponential and kurtosis models, and T2w demonstrated good classification performance for GS of PCa. In multisequence setting, the optimal radiomics based texture extraction methods and parameters differed between different image types.
利用放射组学和 T2 加权成像(T2w)、高 b 值采集的扩散加权成像(DWI)和 T2 映射(T2)的纹理特征,开发并验证一种用于预测前列腺癌(PCa)Gleason 评分(GS)的分类器系统。
在 3T 上使用表面阵列线圈采集 62 例经组织学证实的 PCa 患者的 T2w、DWI(12 个 b 值,0-2000 s/mm2)和 T2 数据集。使用单指数和峰度模型对 DWI 数据集进行后处理,而 T2w 则标准化到一个共同的尺度。利用局部统计和 8 种不同的放射组学/纹理描述符,在不同的配置下提取总共 7105 个肿瘤特征。使用具有隐式特征选择和留对交叉验证的正则化逻辑回归来区分 GS 为 3+3 和>3+3 的肿瘤。
总共分析了 100 个 PCa 病变,其中 20 个和 80 个病变的 GS 分别为 3+3 和>3+3。通过选择 T2w、ADCm 和 K 的前 1%特征,该模型的 ROC AUC 为 0.88(95%CI:0.82-0.95),获得了最佳的模型性能。T2 映射提供的纹理特征几乎没有增加价值。最有用的纹理特征基于灰度共生矩阵、Gabor 变换和 Zernike 矩。
使用单指数和峰度模型后处理的 DWI 和 T2w 的纹理特征分析对 PCa 的 GS 具有良好的分类性能。在多序列设置中,不同图像类型的最佳放射组学基于纹理提取方法和参数不同。