Suppr超能文献

通过MRI影像组学特征预测前列腺癌的包膜外侵犯:一项系统评价

Prediction of extracapsular extension of prostate cancer by MRI radiomic signature: a systematic review.

作者信息

Guerra Adalgisa, Wang Helen, Orton Matthew R, Konidari Marianna, Papanikolaou Nickolas K, Koh Dow Mu, Donato Helena, Alves Filipe Caseiro

机构信息

Department of Radiology, Hospital da Luz Lisbon, Lisboa, Portugal.

Royal Surrey County Hospital HSH Foundation Trust. Royal Marsden Hospital NHS Foundation Trust, London, England.

出版信息

Insights Imaging. 2024 Aug 26;15(1):217. doi: 10.1186/s13244-024-01776-8.

Abstract

UNLABELLED

The objective of this review is to survey radiomics signatures for detecting pathological extracapsular extension (pECE) on magnetic resonance imaging (MRI) in patients with prostate cancer (PCa) who underwent prostatectomy. Scientific Literature databases were used to search studies published from January 2007 to October 2023. All studies related to PCa MRI staging and using radiomics signatures to detect pECE after prostatectomy were included. Systematic review was performed according to Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA). The risk of bias and certainty of the evidence was assessed using QUADAS-2 and the radiomics quality score. From 1247 article titles screened, 16 reports were assessed for eligibility, and 11 studies were included in this systematic review. All used a retrospective study design and most of them used 3 T MRI. Only two studies were performed in more than one institution. The highest AUC of a model using only radiomics features was 0.85, for the test validation. The AUC for best model performance (radiomics associated with clinical/semantic features) varied from 0.72-0.92 and 0.69-0.89 for the training and validation group, respectively. Combined models performed better than radiomics signatures alone for detecting ECE. Most of the studies showed a low to medium risk of bias. After thorough analysis, we found no strong evidence supporting the clinical use of radiomics signatures for identifying extracapsular extension (ECE) in pre-surgery PCa patients. Future studies should adopt prospective multicentre approaches using large public datasets and combined models for detecting ECE.

CRITICAL RELEVANT STATEMENT

The use of radiomics algorithms, with clinical and AI integration, in predicting extracapsular extension, could lead to the development of more accurate predictive models, which could help improve surgical planning and lead to better outcomes for prostate cancer patients.

PROTOCOL OF SYSTEMATIC REVIEW REGISTRATION

PROSPERO CRD42021272088. Published: https://doi.org/10.1136/bmjopen-2021-052342 .

KEY POINTS

Radiomics can extract diagnostic features from MRI to enhance prostate cancer diagnosis performance. The combined models performed better than radiomics signatures alone for detecting extracapsular extension. Radiomics are not yet reliable for extracapsular detection in PCa patients.

摘要

未标注

本综述的目的是调查在接受前列腺切除术的前列腺癌(PCa)患者的磁共振成像(MRI)上检测病理包膜外侵犯(pECE)的放射组学特征。使用科学文献数据库检索2007年1月至2023年10月发表的研究。纳入所有与PCa MRI分期以及使用放射组学特征检测前列腺切除术后pECE相关的研究。根据系统评价和Meta分析的首选报告项目(PRISMA)进行系统评价。使用QUADAS - 2和放射组学质量评分评估偏倚风险和证据的确定性。从筛选的1247篇文章标题中,评估了16份报告的 eligibility,11项研究纳入本系统评价。所有研究均采用回顾性研究设计,且大多数研究使用3T MRI。只有两项研究在不止一个机构进行。仅使用放射组学特征的模型在测试验证中的最高AUC为0.85。最佳模型性能(与临床/语义特征相关的放射组学)在训练组和验证组的AUC分别为0.72 - 0.92和0.69 - 0.89。联合模型在检测包膜外侵犯方面比单独的放射组学特征表现更好。大多数研究显示偏倚风险低至中等。经过全面分析,我们发现没有强有力的证据支持在术前PCa患者中使用放射组学特征进行包膜外侵犯(ECE)的临床识别。未来的研究应采用前瞻性多中心方法,使用大型公共数据集和联合模型来检测ECE。

关键相关声明

将放射组学算法与临床和人工智能相结合,用于预测包膜外侵犯,可能会导致开发出更准确的预测模型,这有助于改善手术规划并为前列腺癌患者带来更好的结果。

系统评价注册协议

PROSPERO CRD42021272088。发布链接:https://doi.org/10.1136/bmjopen - 2021 - 052342 。

要点

放射组学可以从MRI中提取诊断特征以提高前列腺癌诊断性能。联合模型在检测包膜外侵犯方面比单独的放射组学特征表现更好。放射组学在PCa患者的包膜外检测中尚不可靠。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c94f/11347513/85ed79908d8e/13244_2024_1776_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验