Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.
Kaiser Permanente Division of Research, Oakland, CA, USA.
Lancet HIV. 2019 Oct;6(10):e688-e695. doi: 10.1016/S2352-3018(19)30137-7. Epub 2019 Jul 5.
BACKGROUND: The limitations of existing HIV risk prediction tools are a barrier to implementation of pre-exposure prophylaxis (PrEP). We developed and validated an HIV prediction model to identify potential PrEP candidates in a large health-care system. METHODS: Our study population was HIV-uninfected adult members of Kaiser Permanente Northern California, a large integrated health-care system, who were not yet using PrEP and had at least 2 years of previous health plan enrolment with at least one outpatient visit from Jan 1, 2007, to Dec 31, 2017. Using 81 electronic health record (EHR) variables, we applied least absolute shrinkage and selection operator (LASSO) regression to predict incident HIV diagnosis within 3 years on a subset of patients who entered the cohort in 2007-14 (development dataset), assessing ten-fold cross-validated area under the receiver operating characteristic curve (AUC) and 95% CIs. We compared the full model to simpler models including only men who have sex with men (MSM) status and sexually transmitted infection (STI) positivity, testing, and treatment. Models were validated prospectively with data from an independent set of patients who entered the cohort in 2015-17. We computed predicted probabilities of incident HIV diagnosis within 3 years (risk scores), categorised as low risk (<0·05%), moderate risk (0·05% to <0·20%), high risk (0·20% to <1·0%), and very high risk (≥1·0%), for all patients in the validation dataset. FINDINGS: Of 3 750 664 patients in 2007-17 (3 143 963 in the development dataset and 606 701 in the validation dataset), there were 784 incident HIV cases within 3 years of baseline. The LASSO procedure retained 44 predictors in the full model, with an AUC of 0·86 (95% CI 0·85-0·87) for incident HIV cases in 2007-14. Model performance remained high in the validation dataset (AUC 0·84, 0·80-0·89). The full model outperformed simpler models including only MSM status and STI positivity. For the full model, flagging 13 463 (2·2%) patients with high or very high HIV risk scores in the validation dataset identified 32 (38·6%) of the 83 incident HIV cases, including 32 (46·4%) of 69 male cases and none of the 14 female cases. The full model had equivalent sensitivity by race whereas simpler models identified fewer black than white HIV cases. INTERPRETATION: Prediction models using EHR data can identify patients at high risk of HIV acquisition who could benefit from PrEP. Future studies should optimise EHR-based HIV risk prediction tools and evaluate their effect on prescription of PrEP. FUNDING: Kaiser Permanente Community Benefit Research Program and the US National Institutes of Health.
背景:现有的 HIV 风险预测工具存在局限性,这是实施暴露前预防(PrEP)的障碍。我们开发并验证了一种 HIV 预测模型,以在一个大型医疗保健系统中确定潜在的 PrEP 候选者。
方法:我们的研究人群是加利福尼亚州北部 Kaiser Permanente 的未感染 HIV 的成年会员,这是一个大型综合性医疗保健系统,他们尚未使用 PrEP,并且在 2007 年 1 月 1 日至 2017 年 12 月 31 日期间至少有 2 年的健康计划参保记录,并且至少有一次门诊就诊。使用 81 个电子健康记录(EHR)变量,我们应用最小绝对收缩和选择算子(LASSO)回归,在 2007-14 年进入队列的患者子集上预测三年内发生 HIV 诊断的情况(开发数据集),评估十折交叉验证后的接收器操作特征曲线(ROC)下面积(AUC)和 95%置信区间(CI)。我们将全模型与仅包括男男性行为者(MSM)状态和性传播感染(STI)阳性、检测和治疗的更简单模型进行了比较。使用 2015-17 年进入队列的独立患者数据集对模型进行了前瞻性验证。我们计算了所有验证数据集中患者三年内发生 HIV 诊断的预测概率(风险评分),分为低风险(<0.05%)、中风险(0.05%至<0.20%)、高风险(0.20%至<1.0%)和极高风险(≥1.0%)。
结果:在 2007-17 年间的 3750664 名患者中(开发数据集中有 3143963 名患者,验证数据集中有 606701 名患者),有 784 名患者在基线后三年内发生 HIV 病例。LASSO 程序在全模型中保留了 44 个预测因子,在 2007-14 年的 HIV 事件中 AUC 为 0.86(95%CI 0.85-0.87)。在验证数据集中,模型性能仍然很高(AUC 为 0.84,0.80-0.89)。全模型优于仅包括 MSM 状态和 STI 阳性的更简单模型。在全模型中,在验证数据集中标记 13463 名(2.2%)具有高或极高 HIV 风险评分的患者,可识别出 83 例 HIV 事件中的 32 例(38.6%),包括 69 例男性病例中的 32 例(46.4%)和 14 例女性病例中没有任何一例。全模型在种族方面具有相同的敏感性,而更简单的模型则确定黑人 HIV 病例少于白人。
解释:使用 EHR 数据的预测模型可以识别出处于 HIV 感染高风险的患者,他们可能受益于 PrEP。未来的研究应优化基于 EHR 的 HIV 风险预测工具,并评估其对 PrEP 处方的影响。
资金:Kaiser Permanente 社区福利研究计划和美国国立卫生研究院。
Stud Health Technol Inform. 2021-5-27
Online J Public Health Inform. 2025-8-12
PLOS Glob Public Health. 2025-6-4
NEJM Catal Innov Care Deliv. 2023-11
J Int AIDS Soc. 2025-4
AIDS Behav. 2025-4-5
MMWR Morb Mortal Wkly Rep. 2018-10-19
N Engl J Med. 2018-3-15
J Acquir Immune Defic Syndr. 2018-2-1
J Acquir Immune Defic Syndr. 2016-7-1