文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用电子健康记录数据和机器学习识别 HIV 暴露前预防候选者:一项建模研究。

Use of electronic health record data and machine learning to identify candidates for HIV pre-exposure prophylaxis: a modelling study.

机构信息

Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.

Kaiser Permanente Division of Research, Oakland, CA, USA.

出版信息

Lancet HIV. 2019 Oct;6(10):e688-e695. doi: 10.1016/S2352-3018(19)30137-7. Epub 2019 Jul 5.


DOI:10.1016/S2352-3018(19)30137-7
PMID:31285183
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7152802/
Abstract

BACKGROUND: The limitations of existing HIV risk prediction tools are a barrier to implementation of pre-exposure prophylaxis (PrEP). We developed and validated an HIV prediction model to identify potential PrEP candidates in a large health-care system. METHODS: Our study population was HIV-uninfected adult members of Kaiser Permanente Northern California, a large integrated health-care system, who were not yet using PrEP and had at least 2 years of previous health plan enrolment with at least one outpatient visit from Jan 1, 2007, to Dec 31, 2017. Using 81 electronic health record (EHR) variables, we applied least absolute shrinkage and selection operator (LASSO) regression to predict incident HIV diagnosis within 3 years on a subset of patients who entered the cohort in 2007-14 (development dataset), assessing ten-fold cross-validated area under the receiver operating characteristic curve (AUC) and 95% CIs. We compared the full model to simpler models including only men who have sex with men (MSM) status and sexually transmitted infection (STI) positivity, testing, and treatment. Models were validated prospectively with data from an independent set of patients who entered the cohort in 2015-17. We computed predicted probabilities of incident HIV diagnosis within 3 years (risk scores), categorised as low risk (<0·05%), moderate risk (0·05% to <0·20%), high risk (0·20% to <1·0%), and very high risk (≥1·0%), for all patients in the validation dataset. FINDINGS: Of 3 750 664 patients in 2007-17 (3 143 963 in the development dataset and 606 701 in the validation dataset), there were 784 incident HIV cases within 3 years of baseline. The LASSO procedure retained 44 predictors in the full model, with an AUC of 0·86 (95% CI 0·85-0·87) for incident HIV cases in 2007-14. Model performance remained high in the validation dataset (AUC 0·84, 0·80-0·89). The full model outperformed simpler models including only MSM status and STI positivity. For the full model, flagging 13 463 (2·2%) patients with high or very high HIV risk scores in the validation dataset identified 32 (38·6%) of the 83 incident HIV cases, including 32 (46·4%) of 69 male cases and none of the 14 female cases. The full model had equivalent sensitivity by race whereas simpler models identified fewer black than white HIV cases. INTERPRETATION: Prediction models using EHR data can identify patients at high risk of HIV acquisition who could benefit from PrEP. Future studies should optimise EHR-based HIV risk prediction tools and evaluate their effect on prescription of PrEP. FUNDING: Kaiser Permanente Community Benefit Research Program and the US National Institutes of Health.

摘要

背景:现有的 HIV 风险预测工具存在局限性,这是实施暴露前预防(PrEP)的障碍。我们开发并验证了一种 HIV 预测模型,以在一个大型医疗保健系统中确定潜在的 PrEP 候选者。

方法:我们的研究人群是加利福尼亚州北部 Kaiser Permanente 的未感染 HIV 的成年会员,这是一个大型综合性医疗保健系统,他们尚未使用 PrEP,并且在 2007 年 1 月 1 日至 2017 年 12 月 31 日期间至少有 2 年的健康计划参保记录,并且至少有一次门诊就诊。使用 81 个电子健康记录(EHR)变量,我们应用最小绝对收缩和选择算子(LASSO)回归,在 2007-14 年进入队列的患者子集上预测三年内发生 HIV 诊断的情况(开发数据集),评估十折交叉验证后的接收器操作特征曲线(ROC)下面积(AUC)和 95%置信区间(CI)。我们将全模型与仅包括男男性行为者(MSM)状态和性传播感染(STI)阳性、检测和治疗的更简单模型进行了比较。使用 2015-17 年进入队列的独立患者数据集对模型进行了前瞻性验证。我们计算了所有验证数据集中患者三年内发生 HIV 诊断的预测概率(风险评分),分为低风险(<0.05%)、中风险(0.05%至<0.20%)、高风险(0.20%至<1.0%)和极高风险(≥1.0%)。

结果:在 2007-17 年间的 3750664 名患者中(开发数据集中有 3143963 名患者,验证数据集中有 606701 名患者),有 784 名患者在基线后三年内发生 HIV 病例。LASSO 程序在全模型中保留了 44 个预测因子,在 2007-14 年的 HIV 事件中 AUC 为 0.86(95%CI 0.85-0.87)。在验证数据集中,模型性能仍然很高(AUC 为 0.84,0.80-0.89)。全模型优于仅包括 MSM 状态和 STI 阳性的更简单模型。在全模型中,在验证数据集中标记 13463 名(2.2%)具有高或极高 HIV 风险评分的患者,可识别出 83 例 HIV 事件中的 32 例(38.6%),包括 69 例男性病例中的 32 例(46.4%)和 14 例女性病例中没有任何一例。全模型在种族方面具有相同的敏感性,而更简单的模型则确定黑人 HIV 病例少于白人。

解释:使用 EHR 数据的预测模型可以识别出处于 HIV 感染高风险的患者,他们可能受益于 PrEP。未来的研究应优化基于 EHR 的 HIV 风险预测工具,并评估其对 PrEP 处方的影响。

资金:Kaiser Permanente 社区福利研究计划和美国国立卫生研究院。

相似文献

[1]
Use of electronic health record data and machine learning to identify candidates for HIV pre-exposure prophylaxis: a modelling study.

Lancet HIV. 2019-7-5

[2]
Development and validation of an automated HIV prediction algorithm to identify candidates for pre-exposure prophylaxis: a modelling study.

Lancet HIV. 2019-7-5

[3]
Development of a Human Immunodeficiency Virus Risk Prediction Model Using Electronic Health Record Data From an Academic Health System in the Southern United States.

Clin Infect Dis. 2023-1-13

[4]
How to Identify Potential Candidates for HIV Pre-Exposure Prophylaxis: An AI Algorithm Reusing Real-World Hospital Data.

Stud Health Technol Inform. 2021-5-27

[5]
Using electronic health records to identify candidates for human immunodeficiency virus pre-exposure prophylaxis: An application of super learning to risk prediction when the outcome is rare.

Stat Med. 2020-10-15

[6]
Characterization of HIV Preexposure Prophylaxis Use Behaviors and HIV Incidence Among US Adults in an Integrated Health Care System.

JAMA Netw Open. 2021-8-2

[7]
Sexual behaviour and incidence of HIV and sexually transmitted infections among men who have sex with men using daily and event-driven pre-exposure prophylaxis in AMPrEP: 2 year results from a demonstration study.

Lancet HIV. 2019-6-6

[8]
Retention, engagement, and adherence to pre-exposure prophylaxis for men who have sex with men and transgender women in PrEP Brasil: 48 week results of a demonstration study.

Lancet HIV. 2018-2-18

[9]
Comparison of Trends in Rates of Sexually Transmitted Infections Before vs After Initiation of HIV Preexposure Prophylaxis Among Men Who Have Sex With Men.

JAMA Netw Open. 2020-12-1

[10]
Introducing pre-exposure prophylaxis to prevent HIV acquisition among men who have sex with men in Sweden: insights from a mathematical pair formation model.

BMJ Open. 2020-2-5

引用本文的文献

[1]
Identifying Substance Use and High-Risk Sexual Behavior Among Sexual and Gender Minority Youth by Using Mobile Phone Data: Development and Validation Study.

Online J Public Health Inform. 2025-8-12

[2]
Development of an electronic health record-based Human Immunodeficiency Virus (HIV) risk prediction model for women, incorporating social determinants of health.

BMC Public Health. 2025-7-2

[3]
Building models, building capacity: A review of participatory machine learning for HIV prevention.

PLOS Glob Public Health. 2025-6-4

[4]
Perspectives of healthcare providers in family planning centers on increasing pre-exposure prophylaxis uptake among women who have migrated from sub-Saharan Africa to France.

PLoS One. 2025-6-2

[5]
Implementing an Automated Prediction Model to Improve Prescribing of HIV Preexposure Prophylaxis.

NEJM Catal Innov Care Deliv. 2023-11

[6]
Linking Criminal Justice-Involved Individuals to HIV Preexposure Prophylaxis: A Qualitative Analysis of Multiple Stakeholder Perspectives.

J Int Assoc Provid AIDS Care. 2025

[7]
Machine learning for personalized risk assessment of HIV, syphilis, gonorrhoea and chlamydia: A systematic review and meta-analysis.

Int J Infect Dis. 2025-8

[8]
Machine learning to improve HIV screening using routine data in Kenya.

J Int AIDS Soc. 2025-4

[9]
HIV Risk Score and Prediction Model in the United States: A Scoping Review.

AIDS Behav. 2025-4-5

[10]
A Multicomponent Strategy to Improve HIV Pre-Exposure Prophylaxis in a Southern US Jail: Protocol for a Type 3 Hybrid Implementation-Effectiveness Trial.

JMIR Res Protoc. 2025-3-18

本文引用的文献

[1]
HIV Preexposure Prophylaxis, by Race and Ethnicity - United States, 2014-2016.

MMWR Morb Mortal Wkly Rep. 2018-10-19

[2]
Low-Intensity Outreach to Increase Uptake of HIV Preexposure Prophylaxis Among Patients with Sexually Transmitted Infections.

AIDS Behav. 2019-2

[3]
Which Patients in the Emergency Department Should Receive Preexposure Prophylaxis? Implementation of a Predictive Analytics Approach.

AIDS Patient Care STDS. 2018-4-19

[4]
Implementing Machine Learning in Health Care - Addressing Ethical Challenges.

N Engl J Med. 2018-3-15

[5]
Preexposure prophylaxis guidelines have low sensitivity for identifying seroconverters in a sample of young Black MSM in Chicago.

AIDS. 2018-1-28

[6]
Using Clinical Notes and Natural Language Processing for Automated HIV Risk Assessment.

J Acquir Immune Defic Syndr. 2018-2-1

[7]
Assessing the Performance of 3 Human Immunodeficiency Virus Incidence Risk Scores in a Cohort of Black and White Men Who Have Sex With Men in the South.

Sex Transm Dis. 2017-5

[8]
Pre-Exposure Prophylaxis: A Narrative Review of Provider Behavior and Interventions to Increase PrEP Implementation in Primary Care.

J Gen Intern Med. 2017-2

[9]
Use of a risk scoring tool to identify higher-risk HIV-1 serodiscordant couples for an antiretroviral-based HIV-1 prevention intervention.

BMC Infect Dis. 2016-10-17

[10]
An Empiric HIV Risk Scoring Tool to Predict HIV-1 Acquisition in African Women.

J Acquir Immune Defic Syndr. 2016-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索