Latt Phyu M, Soe Nyi N, Fairley Christopher K, Chow Eric P F, Johnson Cheryl C, Shah Purvi, Maatouk Ismail, Zhang Lei, Ong Jason J
Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia; School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia; School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
Int J Infect Dis. 2025 Aug;157:107922. doi: 10.1016/j.ijid.2025.107922. Epub 2025 May 6.
Machine learning (ML) shows promise for sexually transmitted infection (STI) risk prediction, but systematic evidence of its effectiveness remains fragmented.
We systematically searched six electronic databases, three preprint archives and conference proceedings (January 2010-April 2024). Studies reporting quantitative performance metrics for supervised ML-based STI risk prediction models were included. We used a bivariate random-effects model to estimate pooled sensitivity, specificity and area under the curve (AUC). The risk of bias was assessed using the Prediction model Risk of Bias Assessment Tool. We conducted sequential analyses of studies with complete and reconstructed confusion matrices. Subgroup analyses and meta-regression explored potential sources of heterogeneity.
Among 3877 records screened, 25 studies comprising 45 unique models met inclusion criteria. For HIV, analysis of studies with complete confusion matrices (7 studies, 9 contingency tables) demonstrated summary AUC of 0.91 (95% CI: 0.88-0.93), pooled sensitivity 0.84 (0.76-0.90) and specificity 0.84 (0.70-0.93). Substantial heterogeneity persisted across subgroups (I² > 98%). For other STIs, individual studies reported AUCs ranging from 0.75-0.87 for syphilis (n = 5), 0.73-1.00 for gonorrhoea (n = 6) and 0.67-1.00 for chlamydia (n = 6).
While ML models show promising performance, particularly for HIV, significant heterogeneity complicates interpretation. Future research should prioritize external validation, standardized guidelines and multi-centred robust implementation studies to evaluate clinical impact.
机器学习(ML)在性传播感染(STI)风险预测方面显示出前景,但其有效性的系统证据仍然零散。
我们系统检索了六个电子数据库、三个预印本存档库和会议论文集(2010年1月至2024年4月)。纳入报告基于监督式ML的STI风险预测模型定量性能指标的研究。我们使用双变量随机效应模型来估计合并的敏感性、特异性和曲线下面积(AUC)。使用预测模型偏倚风险评估工具评估偏倚风险。我们对具有完整和重构混淆矩阵的研究进行了序贯分析。亚组分析和元回归探讨了异质性的潜在来源。
在筛选的3877条记录中,25项研究(包含45个独特模型)符合纳入标准。对于艾滋病毒,对具有完整混淆矩阵的研究(7项研究,9个列联表)进行分析,结果显示汇总AUC为0.91(95%CI:0.88 - 0.93),合并敏感性为0.84(0.76 - 0.90),特异性为0.84(0.70 - 0.93)。各亚组间存在显著异质性(I²>98%)。对于其他性传播感染,个别研究报告梅毒的AUC范围为0.75 - 0.87(n = 5),淋病为0.73 - 1.00(n = 6),衣原体为0.67 - 1.00(n = 6)。
虽然ML模型表现出有前景的性能,特别是对于艾滋病毒,但显著的异质性使解释变得复杂。未来的研究应优先进行外部验证、标准化指南和多中心稳健实施研究,以评估临床影响。