Zhang Xuan, Zhong Lei, Mateos Arturo, Kudo Akira, Vyatskikh Andrey, Gao Huajian, Greer Julia R, Li Xiaoyan
Centre for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
Nat Nanotechnol. 2019 Aug;14(8):762-769. doi: 10.1038/s41565-019-0486-y. Epub 2019 Jul 8.
The creation of materials with a combination of high strength, substantial deformability and ductility, large elastic limit and low density represents a long-standing challenge, because these properties are, in general, mutually exclusive. Using a combination of two-photon lithography and high-temperature pyrolysis, we have created micro-sized pyrolytic carbon with a tensile strength of 1.60 ± 0.55 GPa, a compressive strength approaching the theoretical limit of ~13.7 GPa, a substantial elastic limit of 20-30% and a low density of ~1.4 g cm. This corresponds to a specific compressive strength of 9.79 GPa cm g, a value that surpasses that of nearly all existing structural materials. Pillars with diameters below 2.3 μm exhibit rubber-like behaviour and sustain a compressive strain of ~50% without catastrophic failure; larger ones exhibit brittle fracture at a strain of ~20%. Large-scale atomistic simulations reveal that this combination of beneficial mechanical properties is enabled by the local deformation of 1 nm curled graphene fragments within the pyrolytic carbon microstructure, the interactions among neighbouring fragments and the presence of covalent carbon-carbon bonds.
创造出兼具高强度、显著的可变形性与延展性、较大弹性极限以及低密度的材料,是一项长期存在的挑战,因为总体而言,这些特性相互排斥。通过结合双光子光刻和高温热解技术,我们制备出了微米级的热解碳,其拉伸强度为1.60±0.55吉帕,抗压强度接近理论极限值约13.7吉帕,具有20%至30%的显著弹性极限以及约1.4克/立方厘米的低密度。这相当于9.79吉帕·立方厘米/克的比抗压强度,该数值超过了几乎所有现有结构材料。直径小于2.3微米的柱体呈现出类似橡胶的行为,能够承受约50%的压缩应变而不发生灾难性失效;较大的柱体在约20%的应变下会发生脆性断裂。大规模原子模拟表明,热解碳微观结构中1纳米卷曲石墨烯片段的局部变形、相邻片段之间的相互作用以及共价碳 - 碳键的存在,共同促成了这种有益力学性能的组合。