Suppr超能文献

通过贝叶斯优化实现碳纳米晶格的超高比强度

Ultrahigh Specific Strength by Bayesian Optimization of Carbon Nanolattices.

作者信息

Serles Peter, Yeo Jinwook, Haché Michel, Demingos Pedro Guerra, Kong Jonathan, Kiefer Pascal, Dhulipala Somayajulu, Kumral Boran, Jia Katherine, Yang Shuo, Feng Tianjie, Jia Charles, Ajayan Pulickel M, Portela Carlos M, Wegener Martin, Howe Jane, Singh Chandra Veer, Zou Yu, Ryu Seunghwa, Filleter Tobin

机构信息

Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada.

Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu, 34141, Republic of Korea.

出版信息

Adv Mater. 2025 Apr;37(14):e2410651. doi: 10.1002/adma.202410651. Epub 2025 Jan 23.

Abstract

Nanoarchitected materials are at the frontier of metamaterial design and have set the benchmark for mechanical performance in several contemporary applications. However, traditional nanoarchitected designs with conventional topologies exhibit poor stress distributions and induce premature nodal failure. Here, using multi-objective Bayesian optimization and two-photon polymerization, optimized carbon nanolattices with an exceptional specific strength of 2.03 MPa m kg at low densities <215 kg m are created. Generative design optimization provides experimental improvements in strength and Young's modulus by as much as 118% and 68%, respectively, at equivalent densities with entirely different lattice failure responses. Additionally, the reduction of nanolattice strut diameters to 300 nm produces a unique high-strength carbon with a pyrolysis-induced atomic gradient of 94% sp aromatic carbon and low oxygen impurities. Using multi-focus multi-photon polymerization, a millimeter-scalable metamaterial consisting of 18.75 million lattice cells with nanometer dimensions is demonstrated. Combining Bayesian optimized designs and nanoarchitected pyrolyzed carbon, the optimal nanostructures exhibit the strength of carbon steel at the density of Styrofoam offering unparalleled capabilities in light-weighting, fuel reduction, and contemporary design applications.

摘要

纳米结构材料处于超材料设计的前沿,并为多种当代应用中的机械性能设定了基准。然而,具有传统拓扑结构的传统纳米结构设计表现出较差的应力分布,并会导致节点过早失效。在此,利用多目标贝叶斯优化和双光子聚合技术,制备出了低密度(<215 kg/m³)下比强度高达2.03 MPa·m/kg的优化碳纳米晶格。生成式设计优化在等效密度下分别将强度和杨氏模量提高了118%和68%,同时晶格失效响应完全不同。此外,将纳米晶格支柱直径减小到300 nm,可产生一种独特的高强度碳,其热解诱导的原子梯度为94%的sp芳香碳,且氧杂质含量低。利用多焦点多光子聚合技术,展示了一种由1875万个纳米尺寸晶格单元组成的毫米级可扩展超材料。结合贝叶斯优化设计和纳米结构热解碳,最佳纳米结构在聚苯乙烯泡沫塑料的密度下展现出碳钢的强度,在轻量化、减少燃料消耗和当代设计应用方面具有无与伦比的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0e0/11983246/353e22a01c75/ADMA-37-2410651-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验