Suppr超能文献

具有增强机械性能的微米级聚乙二醇

Micrometer-scale poly(ethylene glycol) with enhanced mechanical performance.

作者信息

Zheng Letian, Liang Heyi, Tang Jin, Zheng Qiang, Chen Fang, Wang Lian, Li Qi

机构信息

Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China.

出版信息

Nat Commun. 2025 May 12;16(1):4391. doi: 10.1038/s41467-025-59742-x.

Abstract

Strong and lightweight materials are highly desired. Here we report the emergence of a compressive strength exceeding 2 GPa in a directly printed poly(ethylene glycol) micropillar. This strong and highly crosslinked micropillar is not brittle, instead, it behaves like rubber under compression. Experimental results show that the micropillar sustains a strain approaching 70%, absorbs energy up to 310 MJ/m, and displays an almost 100% recovery after cyclic loading. Simple micro-lattices (e.g., honeycombs) of poly(ethylene glycol) also display high strength at low structural densities. By combining a series of control experiments, computational simulations and in situ characterization, we find that the key to achieving such mechanical performance lies in the fabrication of a highly homogeneous structure with suppressed defect formation. Our discovery unveils a generalizable approach for achieving a performance leap in polymeric materials and provides a complementary approach to enhance the mechanical performance of low-density latticed structures.

摘要

人们非常需要坚固且轻质的材料。在此,我们报道了一种直接打印的聚乙二醇微柱体,其抗压强度超过了2吉帕斯卡。这种坚固且高度交联的微柱体并不脆,相反,在压缩时其表现得像橡胶一样。实验结果表明,该微柱体能承受接近70%的应变,吸收能量高达310兆焦/立方米,并且在循环加载后几乎能100%恢复。聚乙二醇的简单微晶格(如蜂窝状)在低结构密度下也表现出高强度。通过结合一系列对照实验、计算模拟和原位表征,我们发现实现这种机械性能的关键在于制造具有抑制缺陷形成的高度均匀结构。我们的发现揭示了一种实现聚合物材料性能飞跃的通用方法,并为提高低密度晶格结构的机械性能提供了一种补充方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7225/12069566/c55234c82120/41467_2025_59742_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验